• Stabilization Mechanisms of Powdered and Bead Type Stabilizer Made of Mg-Fe Layered Double Hydroxide (LDH) for the Arsenic Contaminated Soil
  • Seonhee Kim1·Kyeongtae Kim1·Yuna Oh1·Yikyeong Han2·Minhee Lee2*

  • 1Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
    2Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea

  • Mg-Fe 이중층수산화물로 제조한 분말상과 입상 안정화제의 비소 오염토양 안정화 기작
  • 김선희1·김경태1·오유나1·한이경2·이민희2*

  • 1부경대학교 지구환경시스템과학부 지구환경과학전공
    2부경대학교 지구환경시스템과학부 환경지질과학전공

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The magnesium and iron-based layered double hydroxide (Mg-Fe LDH) was synthesized by the co-precipitation process and the bead type LDH (BLDH, 5~6 mm in diameter) was manufactured by using the Mg-Fe LDH and the starch as a binder. To evaluate the feasibility of the BLDH as the As stabilizer in the soil, various experiments were performed and the As stabilization efficiency of the BLDH was compared to that of powdered type LDH (PLDH, <149 μm in diameter). For the As sorption batch experiment, the As sorption efficiency of both of the PLDH and the BLDH showed higher than 99%. For the stabilization experiment with soil, the As extraction reducing efficiency of the PLDH was higher than 87%, and for the BLDH, it was higher than 80%, suggesting that the BLDH has similar the feasibility of As stabilization for the contaminated soil, compared to the PLDH. From the continuous column experiments, when more than 7% BLDH was added into the soil, the As stabilization efficiency of the column maintained at over 91% for 7 pore volume flushing (simulating about 21 months of rainfall) and slowly decreased down to 64% after that time (to 36 months) under the non-equilibrium conditions. Results suggested that more than 7% of BLDH added in As-contaminated soil could be enough to stabilize As in soil for a long time. The main As fixation mechanisms on the LDH were also identified through the X-ray fluorescence (XRF), the X-ray diffraction (XRD), and the Fourier transform infrared (FT-IR) analyses. Results showed that the LDH has enough of an external surface adsorption capacity and an anion exchange capability at the interlayer spaces. Results of SEM/EDS and BET analyses also supported that the Mg-Fe LDH used in this study has sufficient porous structures and outer surfaces to fix the As. The reduction of carbonate (CO32-) and sulfate (SO42-) anions in the LDH after the reaction between As and the LDH was observed through the FT-IR, the XRF, and the XRD analyses, suggesting that the exchange of some of these anions with the arsenate (H2AsO4- or HAsO42-) occurs at the LDH interlayers during the stabilization process in soil.


Keywords: arsenic, LDH, Mg-Fe LDH, soil pollution, sorption, stabilization

This Article

  • 2022; 27(4): 49-62

    Published on Aug 31, 2022

  • 10.7857/JSGE.2022.27.4.049
  • Received on Aug 3, 2022
  • Revised on Aug 16, 2022
  • Accepted on Aug 24, 2022

Correspondence to

  • Minhee Lee
  • Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea

  • E-mail: heelee@pknu.ac.kr