• Characteristics of the Microbial Community Responding to the Vertical Distribution of TPH Concentrations in the Petroleum-Contaminated Site
  • Soo Min Song1,2·Hee Sun Moon1,2*·Ji Yeon Han3·Jehyun Shin1·Seung Ho Jeong1·Chan-Duck Jeong4·Sunghyen Cho5

  • 1Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)
    3Hanwool Life Science Ltd.
    4Future Rural Research Office, Rural Research Institute, Korea Rural Community Corporation
    5National Instrumentation Center for Environmental Management (NICEM), Seoul National University

  • 유류오염지역 부지 내 TPH 수직 농도 분포에 따른 미생물 생태 특성
  • 송수민1,2·문희선1,2*·한지연3·신제현1·정승호1·정찬덕4·조성현5

  • 1한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터
    2과학기술연합대학원대학교 지질과학전공
    3㈜한울생명과학
    4한국농어촌공사 농어촌연구원 미래농어촌연구소
    5서울대학교 농생명과학공동기기원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Adams, R.H., Ojeda-Castillo, V., Guzmán-Osorio, F. J., Álvarez-Coronel, G., and Domínguez-Rodríguez, V.I., 2020, Human health risks from fish consumption following a catastrophic gas oil spill in the Chiquito River, Veracruz, Mexico, Environ. Monit. Assess., 192(12), 1-15.
  •  
  • 2. Barker, J.P., Patrick, G.C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer, Ground Water Monit. Remediat., 7(1), 64-71.
  •  
  • 3. Chaudhary, D.K., Bajagain, R., Jeong, S.W., and Kim, J., 2021, Insights into the biodegradation of diesel oil and changes in bacterial communities in diesel-contaminated soil as a consequence of various soil amendments, Chemosphere, 285, 131416.
  •  
  • 4. Edgar, R.C., 2010, Search and clustering orders of magnitude faster than BLAST, Bioinform., 26(19), 2460-2461.
  •  
  • 5. Gray, N.D., Sherry, A., Grant, R.J., Rowan, A.K., Hubert, C.R.J., Callbeck, C.M., Aitken, C.M., Jones, D.M., Adams, J.J.,Larter, S.R., and Head, I.M., 2011, The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes, Environ. Microbiol., 13(11), 2957-2975.
  •  
  • 6. Gutierrez, T., Singleton, D.R., Berry, D., Yang, T., Aitken, M.D., and Teske, A., 2013, Hydrocarbon-degrading bacteria enriched by the deepwater horizon oil spill identified by cultivation and DNA-SIP, ISME J., 7(11), 2091-2104.
  •  
  • 7. Han, J.S., Kim, C.S., and Han, G.S., 2008, Pollution control & remediation of contaminated groundwater. J. Korean Geo Environ. Soc., 9(3), 5-21.
  •  
  • 8. James, E.K., Gyaneshwar, P., Mathan, N., Barraquio, W.L., Reddy, P.M., Iannetta, P.P., Olivres, F.L., and Ladha, J.K., 2002, Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67, Mol. Plant Microbe Interact., 15(9), 894-906.
  •  
  • 9. Ji, J.H., Zhou, L., Mbadinga, S.M., Irfan, M., Liu, Y.F., Pan, P., Qi, Z.Z., Chen, J., Liu, J.F., Yang, S.Z., Gu, J.D., and Mu, B.Z., 2020, Methanogenic biodegradation of C9 to C12 n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express, 10(1), 1-9.
  •  
  • 10. Jiao, S., Liu, Z., Lin, Y., Yang, J., Chen, W., and Wei, G., 2016, Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns, Soil Biol. Biochem., 98, 64-73.
  •  
  • 11. Kim, J.S., 2010, Findings of microbial community structure and dominant species in soils near army bases and gas stations, Environ. Eng., 32(3), 227-233.
  •  
  • 12. Kim, J.Y. and Cho, K.S., 2006, Bioremediation of oil-contaminated soil using Rhizobacteria and plants, Microbiol. Biotechnol. Lett., 34(3), 185-195.
  •  
  • 13. Lai, C.C., Huang, Y.C., Wei, Y.H., and Chang, J.S., 2009, Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil, J. Hazard. Mater., 167(1-3), 609-614.
  •  
  • 14. Lee, G.B. and Chang, Y.Y., 2019, Treatability study on the remediation groundwater contaminated by TPH Cr6+: lab-scale experiment, J. Environ. Impact Assess., 28(3), 332-345.
  •  
  • 15. Lee, J. and Park, K., 2008, Microbial community in the TPH-contaminated aquifer for hot air sparging using terminal-restriction fragment length polymorphism, J. Environ. Impact Assess., 24(1), 19-29.
  •  
  • 16. Li, D.C., Xu, W.F., Mu, Y., Yu, H.Q., Jiang, H., and Crittenden, J.C., 2018, Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis, Environ. Sci. Technol., 52(9), 5330-5338.
  •  
  • 17. Li, Q., You, P., Hu, Q., Leng, B., Wang, J., Chen, J., Wan, S., Wang, B., Yuan, C., Zhou, R., and Ouyang, K., 2020a, Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution, Ecotoxicol. Environ. Saf., 204, 111083.
  •  
  • 18. Li, W., Zhang, Y., Mao, W., Wang, C., and Yin, S., 2020b., Functional potential differences between Firmicutes and Proteobacteria in response to manure amendment in a reclaimed soil, Can. J. Microbiol., 66(12), 689-697.
  •  
  • 19. Lopez-Echartea, E., Strejcek, M., Mukherjee, S., Uhlik, O., and Yrjälä, K., 2020, Bacterial succession in oil-contaminated soil under phytoremediation with poplars, Chemosphere, 243, 125242.
  •  
  • 20. NIER (National Institute of Environmental Research), 2017, Soil pollution process test standards (National Institute of Environmental Research Notice No. 2017-22, Aug. 11th, 2017 enacted).
  •  
  • 21. Obuekwe, C.O., Al-Jadi, Z.K., and Al-Saleh, E.S., 2009, Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment, Int. Biodeterior. Biodegrad., 63(3), 273-279.
  •  
  • 22. Park M.H., and Lee, M.H., 2012, TPH removal of the biodegradation process using 4 indigenous microorganisms for the diesel contaminated soil in a military camp, J. Soil Groundw. Environ., 17(3), 49-58.
  •  
  • 23. Prenafeta-Boldú, F.X., Vervoort, J., Grotenhuis, J.T. C., and van Groenestijn, J.W., 2002, Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1, Appl. Environ. Microbiol., 68(6), 2660-2665.
  •  
  • 24. Siles, J.A. and Margesin, R., 2018, Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an alpine former military site, Appl. Microbiol. Biotechnol., 102(10), 4409-4421.
  •  
  • 25. Sutton, N.B., Maphosa, F., Morillo, J.A., Abu Al-Soud, W., Langenhoff, A.A., Grotenhuis, T., Rijnaarts, H.H., and Smidt, H., 2013, Impact of long-term diesel contamination on soil microbial community structure, Appl. Environ. Microbiol., 79(2), 619-630.
  •  
  • 26. Toth, C.R. and Gieg, L.M., 2018, Time course-dependent methanogenic crude oil biodegradation: dynamics of fumarate addition metabolites, biodegradative genes, and microbial community composition, Front. Microbiol., 8, 2610.
  •  
  • 27. Wang, S.Y., Kuo, Y.C., Hong, A., Chang, Y.M., and Kao, C.M., 2016, Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system, Chemosphere, 164, 558-567.
  •  
  • 28. Yergeau, E., Sanschagrin, S., Beaumier, D., and Greer, C.W., 2012, Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils, PloS One, 7(1), e30058.
  •  
  • 29. Zheng, X., Ding, H., Xu, X., Liang, B., Liu, X., Zhao, D., and Sun, L., 2021, In situ phytoremediation of polycyclic aromatic hydrocarbon-contaminated agricultural greenhouse soil using celery, Environ. Technol., 42(21), 3329-3337.
  •  

This Article

  • 2022; 27(S1): 51-63

    Published on Jul 31, 2022

  • 10.7857/JSGE.2022.27.S.051
  • Received on Jun 17, 2022
  • Revised on Jun 22, 2022
  • Accepted on Jul 18, 2022

Correspondence to

  • Hee Sun Moon
  • 1Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)

  • E-mail: hmoon@kigam.re.kr