• Applications of Data Science Technologies in the Field of Groundwater Science and Future Trends
  • Jina Jeong1·Jae Min Lee2·Subi Lee1·Woojong Yang3·Weon Shik Han3*

  • 1Department of Geology, Kyungpook National University, Daegu 41566, Korea
    2Groundwater Environmental Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea
    3Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea

  • 데이터 사이언스 기술의 지하수 분야 응용 사례 분석 및 발전 방향
  • 정진아1·이재민2·이수비1·양우종3·한원식3*

  • 1경북대학교 지질학과, 2한국지질자원연구원 지하수환경연구센터, 3연세대학교 지구시스템과학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Aderemi, B., Olwal, T., Ndambuki, J., and Rwanga, S., 2022, A review of groundwater management models with a focus on IoT-Based systems, Sustainability, 14(1), 148.
  •  
  • 2. Abd El-Aziz, A.A., Alsalem K.O., and Mahmood, M.A, 2021, An intelligent groundwater management recommender system, Indian J. Sci. Technol., 14(37), 2871-2879.
  •  
  • 3. Ahn, E., 2021, Analysis of digital twin technology trends related to geoscience and mineral resources after the Korean new deal policy in 2020, Econ. Environ. Geol., 54(6), 659-670.
  •  
  • 4. Ahn, J.J., Kim, Y.M., Yoo, K., Park, J., and Oh, K.J., 2012, Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability, Environ. Monit. Assess., 184, 6637-6645.
  •  
  • 5. Amini, M., Abbaspour, K., and Johnson, C., 2010, A comparison of different rule-based statistical models for modeling geogenic groundwater contamination, Environ. Model. Softw., 25(12), 1650-1657.
  •  
  • 6. Bowes, B.D., Sadler, J.M., Morsy, M.M., Behl, M., and Goodall, J.L., 2019, Forecasting groundwater table in a flood prone coastal city with long short-term memory and recurrent neural networks, Water, 11(5), 1098.
  •  
  • 7. Chang, H., Moon, B., Yoon, S., and Jin, T., 2017, Development and performance evaluation of multiple sensor for groundwater quality monitoring and remote control system using IoT, J. Korea Inst. Inf. Commun. Eng., 21(10), 1957-1963.
  •  
  • 8. Chen, C., He, W., Zhou, H., Xue, Y., and Zhu, M., 2020, A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China, Scientific Reports, 10, 3904.
  •  
  • 9. Coulibaly, P., Anctil, F., and Bobée, B., 2000, Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 203(3-4), 244-257.
  •  
  • 10. Coulibaly, P., Anctil, F., and Bobee, B., 2001a, Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6(5).
  •  
  • 11. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B., 2001b, Artificial neural network modeling of water table depth fluctuations, Water Resour. Res., 37(4), 885-896.
  •  
  • 12. Coyte, R.M., Singh, A., Furst, K.E., Mitch, W.A., and Vengosh, A., 2019, Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Science of the Total Environment, 688, 1216-1227.
  •  
  • 13. Cristaldi, L., Ferrero, A., Macchi, M., Mehrafshan, A., and Arpaia, P., 2020, Virtual Sensors: a Tool to Improve Reliability, 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 10.1109/MetroInd4.0IoT48571.2020.9138173.
  •  
  • 14. Daliakopoulos, I., Coulibaly, P., and Tsanis, I., 2005, Groundwater level forecasting using artificial neural networks, J. Hydrol., 309(1-4), 229-240.
  •  
  • 15. Drage, J. and Kennedy, G., 2020, Building a low-cost, internet-of-things, real-time groundwater level monitoring Network, Ground Water Monit. Remediat., 40(4), 67-73.
  •  
  • 16. Edmunds, W.M., Shand, P., Hart, P., and Ward, R.S., 2003, The natural (baseline) quality of groundwater: a UK pilot study, Science of the Total Environment, 310(1-3), 25-35.
  •  
  • 17. Frederick, L., VanDerslice, J., Taddie, M., Malecki, K., Gregg, J., Faust, N., and Johnson, W., 2016, Contrasting regional and national mechanisms for predicting elevated arsenic in private wells across the United States using classification and regression trees, Water Research, 91, 295-304.
  •  
  • 18. Goodall, J., Horsburgh, J., Whiteaker, T., Maidment, D., and Zaslavsky, I., 2008, A first approach to web services for the National Water Information System, Environ. Model. Softw., 23(4), 404-411.
  •  
  • 19. Hussein, E., Thron, C., Ghaziasgar, M., Bagula, A., and Vaccari, M., 2020, Groundwater prediction using machine-learning tools, Algorithms, 13(11), 300.
  •  
  • 20. Jeong, J. and Park, E., 2019, Comparative applications of data-driven models representing water table fluctuations, J. Hydrol., 572, 261-273.
  •  
  • 21. Jeong, J., Park, E., Chen, H., Kim, K., Han, W., and Suk, H., 2020a, Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data, J. Hydrol., 582 124512.
  •  
  • 22. Jeong, J., Jeong, J., Park, E., Lee, B., Song, S., Han, W., and Chung, S., 2020b, Development of an efficient data-driven method to estimate the hydraulic properties of aquifers from groundwater level fluctuation pattern features, J. Hydrol., 590, 125453.
  •  
  • 23. Jeong, J., Jeong, J., Lee, B., and Song, S., 2021, The applicability of conditional generative model generating groundwater level fluctuation corresponding to precipitation pattern, Econ. Environ. Geol., 54(1), 77-89.
  •  
  • 24. Jeong, J., Choung, S., Jeong, D., Kim, M., Kim, H., and Kim, J., 2022, Development of data-driven models for estimating the probability of high-concentration occurrence of naturally occurring radioactive materials in groundwater, J. Hydrol., 605, 127346.
  •  
  • 25. Kenda, K., Cerin, M., Bogataj, M., Senozetnik, M., Klemen, K., Pergar, P., Laspidou, C., and Mladenic, D., 2018, Groundwater modeling with machine learning techniques: ljubljana polje aquifer, Proceedings, 2(11), 697.
  •  
  • 26. Kim, G., Hwang, C., Shin, H., and Choi, M, 2019a, Applicability of groundwater recharge rate estimation method based on artificial neural networks in unmeasured areas, J. Geol. Soc. Korea, 55(6), 693-701.
  •  
  • 27. Kim, G., Kim, J., and Shin, H., 2019b, Estimation of groundwater usage for the living (domestic and business) purpose wells by using a regression tree method, J. Geol. Soc. Korea, 55(6), 683-691.
  •  
  • 28. Kim, I. and Lee, J., 2021, Performance analysis of ANN prediction for groundwater level considering regional‐specific influence components, Groundwater, 60(3), 344-361.
  •  
  • 29. Kim, Y., Jeong, J., Park, H., Kwon, M., Cho, C., and Jeong, J., 2022, Development of a data-driven ensemble regressor and its applicability for identifying contextual and collective outliers in groundwater level time-series data, J. Hydrol., 612, 128127.
  •  
  • 30. Kong, Q., 2021, Deep Learning Based Approach to Integrate MyShake's Trigger Data with ShakeAlert for Faster and Robust EEW Alerts, Lawrence livermore national laboratory, LLNL-TR-830065.
  •  
  • 31. Kulabako, N.R., Nalubega, M., and Thunvik, R., 2007, Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda, Science of the Total Environment, 381(1-3), 180-199.
  •  
  • 32. Kundzewicz, Z. (Ed.)., 1995, New Uncertainty Concepts in Hydrology and Water Resources (International Hydrology Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511564482.
  •  
  • 33. Lebron, L., Schaap, M.G., and Suarez, D.L., 1999, Saturated hydraulic conductivity prediction from microscopic pore geometry measurements and neural networks analysis, Water Resour. Res., 35(10), 3149-3158.
  •  
  • 34. Lee, J., Kang, S., Kim, T., and Chun, G., 2018, Development of groundwater level monitoring and forecasting technique for drought analysis (II) – Groundwater drought forecasting using SPI, SGI and ANN, J. Korea Water Resour. Assoc., 51(11), 1021-1029.
  •  
  • 35. Lee, S., Hyun, Y., and Lee, M., 2019, Groundwater potential mapping using data mining models of big data analysis in Goyang-si, South Korea, Sustainability, 11(6), 1678.
  •  
  • 36. Lee, S., Jeong, J., Kim, M., Park, W., Kim, Y., Park, J., Park, H., Park, G., and Jeong, J., 2021, Data-driven analysis for developing the effective groundwater management system in Daejeong-Hangyeong watershed in Jeju Island, Econ. Environ. Geol., 54(3), 373-387.
  •  
  • 37. Liu, L., Kuo, S.M., and Zhou, M., 2009, Virtual sensing techniques and their applications, 2009 International Conference on Networking, Sensing and Control, 31, doi:10.1109/ICNSC.2009. 4919241
  •  
  • 38. Majumdar, S., Smith, R., Butler Jr, J.J., and Lakshmi, V., 2020, Groundwater withdrawal prediction using integrated multitemporal remote sensing data sets and machine learning, Water Resour. Res., 56(11), 11.
  •  
  • 39. Malakar, P., Mukherjee, A., Bhanja, S.N., Ray, R. K., Sarkar, S., and Zahid, A., 2021, Machine-learning-based regional-scale groundwater level prediction using GRACE, Hydrogeol., 29(3),1027-1042.
  •  
  • 40. Najafabadipour, A., Kamali, G., and Nezamabadi-pour, H., 2022, Application of artificial intelligence techniques for the determination of groundwater level using spatio-temporal parameters, ACS Omega, 7(12), 10751-10764. https://doi.org/10/1021/acsomega. 2c00536.
  •  
  • 41. National Water Information System: Mapper, https://toolkit.climate.gov/tool/national-water-information-system-mapper, 2022-11-17.
  •  
  • 42. NASA, 2019, Adavanced Information Systems Technology (AIST) Program, https://esto.nasa.gov/project-selections-for-aist-18/.
  •  
  • 43. Nevo, S., Morin, E., Rosenthal, A.G., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuklea, L., Royz, M., Giladi, N., Levi, N.P., Reich, O., Gilon, O., Maor, R., Timnat, S., Shechter, T., Anisimov, V., Gigi, Y., Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., and Matias, Y., 2021, Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013-4032. https://doi.org/10.5194/hess-2021-554.
  •  
  • 44. Neyens, D., Baisset, M., and Lovighi, H., 2018, Monitoring the groundwater quality/quantity from your desktop – application to salt water intrusion monitoring EMI: Environmental data Management Interface, E3S Web Conf., 54, 00021.
  •  
  • 45. Nolan, B., Gronberg, J., Faunt, C., Eberts, S., and Belitz, K., 2014, Modeling nitrate at domestic and public-supply well depths in the central Valley, California, Environ. Technol.,48(10), 5643-5651.
  •  
  • 46. Nolan, B., Fienen, M., and Lorenz, D., 2015, A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA, J. Hydrol., 531, 902-911.
  •  
  • 47. Nova Scotia Real-Time Shallow Aquifer Monitoring Network, https://novascotia.ca/natr/meb/water-resources/aquifer-network. asp, 2022-11-21.
  •  
  • 48. Paepae, T., Bokoro, P.N., and Kyamakya, K., 2021, From fully physical to virtual sensing for water quality assessment: a comprehensive review of the relevant state-of-the-art, Sensors, 21(21), 6971, https://doi.org/10.3390/s21216971.
  •  
  • 49. Park, S. and Jeong, G, 2021, Variation of seasonal groundwater recharge analyzed using Landsat-8 OLI data and a CART algorithm, Eng. Geol., 31(3), 395-432.
  •  
  • 50. Podgorski, J., Labhasetwar, P., Saha, D., and Berg, M., 2018, Prediction modeling and mapping of groundwater fluoride contamination throughout India, Environ. Sci. Technol., 52(17), 9889-9898.
  •  
  • 51. Podgorski, J., Araya, D., and Berg, M., 2022, Geogenic managanese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic, Sci. Total Environ., 833, 155131.
  •  
  • 52. Ransom, K.M., Nolan, B.T., Stackelberg, P.E., Belitz, K., and Fram, M.S., 2022, Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States, Sci. Total Environ., 807, 151065.
  •  
  • 53. Rizzo, D.M. and Dougherty, D.E., 1994, Characterization of aquifer properties using artificial neural networks: Neural kriging, Water Resour. Res., 302(2), 483-497.
  •  
  • 54. Sahoo, S., Russo, T., Elliott, J., and Foster, I., 2017, Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S., Water Resour. Res., 53(5), 3878-3895.
  •  
  • 55. Schleder, G., Padilha, A., Acosta, C., Costa, M., and Fazzio, A., 2019, From DFT to machine learning: recent approaches to materials science-a review, J. Phys. Mater., 2(11), 032001.
  •  
  • 56. Senozetnik, M., Herga, Z., Subic, T., Bradesko, L., Kenda, K., Klemen, K., Pergar, P., and Mladenic, D., 2018, IoT middleware for water management, Proceedings, 2, 696.
  •  
  • 57. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D., 2016, Mastering the game of Go with deep neural networks and tree search, Nature, 529(28), 484-489.
  •  
  • 58. Stackelberg, P.E., Belitz, K., Brown, C.J., Erickson, M.L., Elliott, S.M., Kauffman, L.J., Ransom, K.M., and Reddy, J.E., 2021, Machine learning predictions of pH in the glacial aquifer system, northern USA, Groundwater, 59(3), 352-368.
  •  
  • 59. Stigter, T.Y., Ribeiro, L., and Carvalho Dill, A.M.M., 2006, Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination levels in two agricultural regions in the south of Portugal, Hydrogeology Journal, 14, 79-99.
  •  
  • 60. UK Research and Innovation (UKRI), 2019 Digital twins for the next generation of geoscience prediction and understanding: OneGeology 4.0., http://www.onegeology.org/docs/newsEvents/digital-Twin-leaflet.pdf.
  •  
  • 61. Vu, M.T., Jardani, A., Massei, N., and Fournier, M., 2021, Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network, J. Hydrol., 597, 125776.
  •  
  • 62. Wadekar, S., Vakare, V., Prajapati, R., Yadav, S., and Yadav, V., 2016, Smart water management using IOT, IEEE, doi: 10.1109/WECON.2016.7993425
  •  
  • 63. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., and Lee, K.-K., 2011, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, J. Hydrol., 396(1-2), 128-138.
  •  
  • 64. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J., 2018, Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas, J. Hydrol., 561, 918-929.
  •  
  • 65. Zhou, T., Wang, F., and Yang, Z., 2017, Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction, Water, 9(10), 781.
  •  
  • 66. Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R., 2021, Ensemble machine learning paradigms in hydrology: A review, J. Hydrol., 598, 126266.
  •  

This Article

  • 2023; 28(S1): 18-39

    Published on Jan 31, 2023

  • 10.7857/JSGE.2023.28.S.018
  • Received on Oct 20, 2022
  • Revised on Nov 3, 2022
  • Accepted on Nov 17, 2022

Correspondence to

  • Weon Shik Han
  • Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea

  • E-mail: hanw@yonsei.ac.kr