• Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process
  • Hyuk Sung Chung·Nguyen Quoc Bien·Jae Young Choi·Inseong Hwang*

  • Department of Civil & Environmental Engineering, Pusan National University

  • 황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리
  • 정혁성·응우옌 쿠엔 비엔·최재영·황인성*

  • 부산대학교 사회환경시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Chung, H.S., Bien, N.Q., Choi, J.Y., and Hwang, I. (2022, October), Treatment of phenol contaminated soil using sulfidated zero valent iron as a persulfate activator for advanced oxidation process, [Conference presentation], KOSSGE 2022 Fall Meeting, Siheung, Korea.
  •  
  • 2. Crane, R.A. and Scott, T.B., 2012, Nanoscale zero-valent iron: future prospects for an emerging water treatment technology, Journal of Hazardous Materials, 211-212, 112-125.
  •  
  • 3. Hancock, P. and Dean, J., 1997, Extraction and fate of phenols in soil, Anal. Commun., 34(12), 377-379.
  •  
  • 4. Deng, S., Liu, L., Cagnettam G., Huang, J., and Yu, G., 2021, Mechanochemically synthesized S-ZVIbm composites for the activation of persulfate in the pH-independent degradation of atrazine: Effects of sulfur dose and ball-milling conditions, Chemical Engineering Journal, 423, 129789.
  •  
  • 5. Dong, H., Hou, K., Qiao, W., Cheng, Y., Zhang, L., Wang, B., Li, L., Wang, Y., Ning, Q., and Zeng, G., 2019, Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate, Chemical Engineering Journal, 359, 1046-1055.
  •  
  • 6. Dong, H., Ning, Q., Li, L., Wang, Y., Wang, B., Zhang, L., Tian, R., Li, R., and Chen, J., and Xie, Q., 2020, A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine, Separation and Purification Technology, 230, 115869.
  •  
  • 7. Fan, D., Lan, Y., Tratnyek, P.G., Johnson, R.L., Filip, J., O¡¯Carroll, D.M., Garcia, A.N., and Agrawal, A., 2017, Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Environ. Sci. Technol., 51(22), 13070-13085.
  •  
  • 8. Fang, G.D., Dionysiou, D.D., Al-Abed, S.R., and Zhou, D.M., 2013, Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs, Applied Catalysis B: Environmental, 129, 325-332.
  •  
  • 9. Gu, Y., Wang, B., He, F., Bradley, M.J., and Tratnyek, P.G., 2017, Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination, Environ. Sci. Technol., 51(21), 12653-12662.
  •  
  • 10. Hou, K., Pi, Z., Yao, F., Wu, B., He, L., Li, X., Wang, D., Dong, H., and Yang, Q., 2021, A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies, Chemical Engineering Journal, 127078.
  •  
  • 11. Jin, H., Cang, Z., Ding, W., Wu, W., Ma, H., Wang, C., Qi, Z., and Li, Z., and Zhang, L., 2021, Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation, Journal of Hazardous Materials, 408, 124411.
  •  
  • 12. Kim, M.H., Na, H.K., Kim, Y.K., Ryoo, S.R., Cho, H.S., Lee, K.E., Jeon, H., Ryoo, R., and Min, D.H., 2011, Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery, ACS Nano, 5(5), 3568-3576.
  •  
  • 13. Kim, C., Ahn, J.Y., Kim, T.Y., Shin, W.S., and Hwang, I., 2018, Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI, Environ. Sci. Technol., 52(6), 3625-3633.
  •  
  • 14. Li, H., Wan, J., Ma, Y., Huang, M., Wang, Y., and Chen, Y., 2014, New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions, Chemical Engineering Journal, 250, 137-147.
  •  
  • 15. Li, J., Zhang, X., Sun, Y., Liang, L., Pan, B., Zhang, W., and Guan, X., 2017, Advances in sulfidation of zerovalent iron for water decontamination, Environ. Sci. Technol., 51(23), 13533-13544.
  •  
  • 16. Liang, C. and Guo, Y.Y., 2010, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol., 44(21), 8203-8208.
  •  
  • 17. Liang, C. and Lai, M.C., 2008, Trichloroethylene degradation by zero valent iron activated persulfate oxidation, Environmental Engineering Science, 25(7), 1071-1078.
  •  
  • 18. Ma, J., He, D., Collins, R.N., He, C., and Waite, T.D., 2016, The tortoise versus the hare-Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants, Water Research, 105, 331-340.
  •  
  • 19. Oh, S.Y., Kim, H.W., Park, J.M., Park, H.S., and Yoon, C., 2009, Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron, Journal of Hazardous Materials, 168(1), 346-351.
  •  
  • 20. Ryu, A., Jeong, S.W., Jang, A., and Choi, H., 2011, Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity, Applied Catalysis B: Environmental, 105(1-2), 128-135.
  •  
  • 21. Rodriguez, S., Vasquez, L., Romero, A., and Santos, A., 2014, Dye oxidation in aqueous phase by using zero-valent iron as persulfate activator: kinetic model and effect of particle size, Ind. Eng. Chem. Res., 53(31), 12288-12294.
  •  
  • 22. Siegrist, R.L., Crimi, M., and Simpkin, T.J. (Eds.), 2011, In situ chemical oxidation for groundwater remediation (Vol. 3). Springer Science & Business Media.
  •  
  • 23. Song, M., 2021, Activation of persulfate using slow-release of Fe(II) mediated by silica-coated nZVI for in situ chemical oxidation. (Masters issertation). Pusan National University, 82.
  •  
  • 24. Song, H. and Carraway, E.R., 2005, Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol., 39(16), 6237-6245.
  •  
  • 25. Tang, X., Hashmi, M.Z., Zeng, B., Yang, J., and Shen, C., 2015, Application of iron-activated persulfate oxidation for the degradation of PCBs in soil, Chemical Engineering Journal, 279, 673-680.
  •  
  • 26. Wei, X., Gao, N., Li, C., Deng, Y., Zhou, S., and Li, L., 2016, Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water, Chemical Engineering Journal, 285, 660-670.
  •  
  • 27. Yoon, S.E., Kim, C., and Hwang, I., 2022, Continuous Fe (II)-dosing scheme for persulfate activation: Performance enhancement mechanisms in a slurry phase reactor, Chemosphere, 308, 136401.
  •  
  • 28. Zhang, L., Jin, H., Ma, H., Gregory, K., Qi, Z., Wang, C., Wu, W., Cang, D., and Li, Z., 2020, Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system, Chemical Engineering Journal, 381, 122787.
  •  
  • 29. Zou, H., Hu, E., Yang, S., Gong, L., and He, F., 2019, Chromium (VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant, Science of the Total Environment, 650, 419-426.
  •  

This Article

  • 2023; 28(1): 15-24

    Published on Feb 28, 2023

  • 10.7857/JSGE.2023.28.1.015
  • Received on Feb 8, 2023
  • Revised on Feb 13, 2023
  • Accepted on Feb 20, 2023

Correspondence to

  • Inseong Hwang
  • Department of Civil & Environmental Engineering, Pusan National University

  • E-mail: ihwang@pusan.ac.kr