• Resilience Assessment for Aquifers close to Groundwater Wells in the Nakdong River Estuary
  • Soonyoung Yu1·Ho-Rim Kim1·Eun-Kyeong Choi2*·Sung-Wook Kim2·Dong-Woo Ryu1·Yongcheol Kim1

  • 1Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea
    2Geo-Information Institute, GI Co. Ltd., Busan 47598, Korea

  • 낙동강 하구 지하수 관정 주변 대수층의 리질리언스 평가
  • 유순영1·김호림1·최은경2*·김성욱2·류동우1·김용철1

  • 1한국지질자원연구원
    2(주)지아이 지반정보연구소

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Allocca, V., Coda, S., De Vita, P., Iorio, A., and Viola, R., 2016, Rising groundwater levels and impacts in urban and semirural areas around Naples (southern Italy), Soc. Geol. It., 41, 14-17.
  •  
  • 2. Anderson, D.J., 2017, Coastal groundwater and climate change, WRL Technical Report 2017/04.
  •  
  • 3. Becker, B., Reichel, F., Bachmann, D., and Schinke, R., 2022, High groundwater levels: Processes, consequences, and management. WIREs Water, 9(5), e1605.
  •  
  • 4. Béné, C., Mehta, L., McGranahan, G., Cannon, T., Gupte, J., and Tanner, T., 2018, Resilience as a policy narrative: potentials and limits in the context of urban planning, Climate and Development, 10(2), 116-133.
  •  
  • 5. Bergh, E.W. and Compton, J.S., 2015, A one-year post-fire record of macronutrient cycling in a mountain sandstone fynbos ecosystem, South Africa, South African Journal of Botany, 97, 48-58.
  •  
  • 6. Blanco-Canqui H. and Lal R., 2010, Soil resilience and conservation. In: Principles of soil conservation and management. Springer, Dordrecht.
  •  
  • 7. Bob, M., Rahman, N., Elamin, A., and Taher, S., 2016, Rising groundwater levels problem in urban areas: A case study from the central area of Madinah City, Saudi Arabia, Arab J Sci Eng, 41, 1461-1472.
  •  
  • 8. Bonetti, J. de A., Anghinoni, I., de Moraes, M.T., and Fink, J.R., 2017, Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems, Soil & Tillage Research, 174, 104-112.
  •  
  • 9. Busan Metropolitan City, 2015, Summary report on the 12th ecological monitoring in the Nakdong River Estuary
  •  
  • 10. Calow, R.C., MacDonald, A.M., Nicol, A.L., and Robins, N.S., 2010, Ground water security and drought in Africa: Linking availability, access, and demand, Ground Water, 48(2), 246-256.
  •  
  • 11. Chung, S.G., Baek, S.H., Ryu, C.K., and Kim, S.W., 2003, Geotechnical characterizaation of Pusan clays, 2003 ISSMGE ATC-7 p.1-42.
  •  
  • 12. Chung, S.-G., Jang, W.-Y., Ninjgarav, E., and Ryu, C., 2006, Compressibility characteristics associated with depositional environment of Pusan clay in the Nakdong River Estuary, Journal of the Korean Geotechnical Society, 22(12), 57-65.
  •  
  • 13. Chung, S.Y., Rajendran, R., Senapathi, V., Sekar, S., Ranganathan, P.C., Oh, Y.Y., and Elzain, H.E., 2020, Processes and characteristics of hydrogeochemical variations between unconfined and confined aquifer systems: a case study of the Nakdong River Basin in Busan City, Korea, Environmental Science and Pollution Research, 27, 10087-10102.
  •  
  • 14. Cuthbert et al., 2019, Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa, Nature, 572, 230-234.
  •  
  • 15. Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., and Webb, J., 2008, A place-based model for understanding community resilience to natural disasters, Global Environmental Change, 18(4), 598-606.
  •  
  • 16. Deloitte, 2019, Business continuity & resilience, UC Ethics, Compliance and Audit Symposium, October 2019. https://www.ucop.edu/ethics-compliance-audit-services/_files/2019_symposium_presentations/bk2-2-disaster-defrain.pdf [accessed 23.06.22]
  •  
  • 17. Duan, X., Dong, Q., Ye, W.-J., Zhou, J.-L., and Oh, E., 2019, Study on adverse effects of groundwater level rising induced by land creation engineering in hilly and gully area of the Loess Plateau, J. Mt. Sci., 16(12), 2739-2753.
  •  
  • 18. Emhanna, S.A., Musa, N.S.B., and Mostafa, M.F., 2021, Causes and impacts of rising water table in Ajdabiya City, NE Libya, International Journal of Environment & Water, 10(2), 127-140.
  •  
  • 19. Foster, S., Eichholz, M., Nlend, B., and Gathu, J., 2020, Securing the critical role of groundwater for the resilient water-supply of urban Africa, Water Policy, 22(1), 121-132.
  •  
  • 20. Franco, I., Contin, M., Bragato, G., and De Nobili, M., 2004, Microbiological resilience of soils contaminated with crude oil, Geoderma, 121, 17-30.
  •  
  • 21. Godschalk, D.R., 2003, Urban hazard mitigation: creating resilient cities, Nat. Hazards Rev., 4(3), 136-43.
  •  
  • 22. Greenland, D. and Szabolcs, I., 1994, Soil Resilience and sustainable land use, CABI.
  •  
  • 23. Holling, C.S., 1973, Resilience and stability of ecological systems, Annual Review of Ecology and Systematics, 4, 1-23.
  •  
  • 24. Jiao, S., Chen, W., and Wei, G., 2019, Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth, Appl Environ Microbiol, 85(6), e02523-18.
  •  
  • 25. Jo, W.R, 1997, The Geomorphic analysis of the Yangsan Fault area, Journal of the Korean Geographical Society, 32(1), 1-14.
  •  
  • 26. Kang, S., Lee, Y.G., Bae, B.Y., Lee, J.W., and Yoon, S., 2000, The Holocene environmental change of the estuary of Nagdong River, Southern Korea, Laguna, 7, 15-21.
  •  
  • 27. Kharroubi, A., Farhat, S., Agoubi, B., and Lakhbir, Z., 2014, Assessment of water qualities and evidence of seawater intrusion in a deep confined aquifer: case of the coastal Djeffara aquifer (Southern Tunisia), Journal of Water Supply: Research and Technology-AQUA, 63(1), 76-84.
  •  
  • 28. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2021, 1:25 Busan quaternary map and explanatory note, p154.
  •  
  • 29. Kim, H.-T., Kim, K., Ryu, S.-H., and Lee, I.-C., 2015, A study on physical characteristic of ground water and sediment property in intertidal flat of Nakdong River Estuary, Journal of the Korean Society of Marine Environment & Safety, 21(5), 467-473.
  •  
  • 30. Kim, M.S., Min, H.G., Hyun, S.H., and Kim, J.G., 2020a, Soil resilience and threat factors related to agricultural environment, Ecology and Resilient Infrastructure, 7(1), 26-42.
  •  
  • 31. Kim, M.S., Min, H.G., Hyun, S.H., and Kim, J.G., 2020b, Evaluation methods of soil resilience related to agricultural environment, Ecology and Resilient Infrastructure, 7(2), 97-113.
  •  
  • 32. Kim, S.H., 2005 The morphological changes of deltaic barrier islands in the Nakdong River Estuary after the construction of river barrage, Journal of the Korean Geographical Society, 40(4), 416-427.
  •  
  • 33. Kim, S.W., Kim, I.S., Choi, E.K., and Chung, S.G., 2002a, The properties of Pusan clay: Magnetic susceptibility of deltaic sediments, Proceedings of the Korean Society of Soil and Groundwater Environment Conference, Busan National University, Busan, 2002.9.13.-14, p.315-318.
  •  
  • 34. Kim, S.W., Lee, H.J., Won, J.H., Ryu, C.K. and Chung, S.G., 2002b, The properties of Pusan clay: Electrical resistivity of deltaic sediments, Proceedings of the Korean Society of Soil and Groundwater Environment Conference, University of Seoul, Seoul, 2002.4.12.-13, p.295-298.
  •  
  • 35. Kim, S.-W., Lee, S.-W., Lee, J.-W., Jo, K.-Y., Kim, Y.-T., and Kim, J.-S., 2006a, Depositional environments and sequence stratigraphy of estuary of the Nakdong River, KGS Spring Conference, March 24-25, Seoul, 882-887.
  •  
  • 36. Kim, S.-W., Choi, E.-K., and Lee, K.-H., 2011, Sequence stratigraphy of unconsolidated sediments in estuary of the Nakdong River, Joint Symposium of ATC 7 & Korean Geotechnical Society, November 25, 2011, Busan, 173-180.
  •  
  • 37. Kim, T.-H., Yu, J.-M., Lee, M.-J., Bae, K.-H., and Jeong, D.-S., 2006b, A design case study considering the artesian pressure in Hwa Jean site of Nakdong delta area, Korean Association of Professional Engineers Soil Mechanics & Foundation Engineering. 311-319.
  •  
  • 38. Linstadter, A., Kuhn, A., Naumann, C., Rasch, S., Sandhage-Hofmann, A., Amelung, W., Jordaan, J., Du Preez, C.C., and Bollig, M., 2016, Assessing the resilience of a real-world social-ecological system: lessons from a multidisciplinary evaluation of a South African pastoral system, Ecology and Society, 21(3), 35.
  •  
  • 39. MacAllister, D.J., Krishan, G., Basharat, M., Cuba, D., and MacDonaldm A.M., 2022, A century of groundwater accumulation in Pakistan and northwest India, Nature Geoscience, 15, 390-396.
  •  
  • 40. MacDonald, A.M., Bonsor, H.C., Calow, R.C., Taylor, R.G., Lapworth, D.J., Maurice, L., Tucker, J., and Ó Dochartaigh, B.É., 2011, Assessing the resilience of a real-world social-ecological system: lessons from a multidisciplinary evaluation of a South African pastoral system, OR/11/031. 25 pp.
  •  
  • 41. Maurice, L., Taylor, R., MacDonald, A., Sanga, H., Johnson, P., Darling, G., and Gooddy, D., 2010, Case study note: Resilience of intensive groundwater abstraction from weathered crystalline rock aquifer systems to climate change in sub-Saharan Africa, Groundwater Programmem Internal Report IR/10/105. British Geological Survey.
  •  
  • 42. Mtoni, Y., Mjemah, I.C., Bakundukize, C., Camp, M.V., Martens, K., and Walraevens, K., 2013, Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam, Tanzania, Environ Earth Sci, 70, 1091-1111.
  •  
  • 43. Park, J., Yoon, H.-S., and Jeon, Y.-H., 2016, Spatial characteristics of vegetation development and groundwater level in sand dunes on a natural beach, J. Korean Soc. Mar. Environ. Energy, 19(3), 218-226.
  •  
  • 44. Park, S.C., 1992, Seismic characteristics and depositional process of sediments in Jinhae Bay, Southeast Coast of Korea. Master¡¯s thesis, Chungnam National University.
  •  
  • 45. Patel, V., Sharma, A., Lai, R., Al-Dhabi, N.A., and Madamwar, D., 2016, Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates, BMC Microbiol, 16(50).
  •  
  • 46. Seybold, C.A., Herrick, J.E., and Brejda, J.J., 1999, Soil resilience: a fundamental component of soil quality, Soil Science, 1644(4), 224-234.
  •  
  • 47. Shin, J. and Hwang, S., 2020, A Borehole-based approach for seawater intrusion in heterogeneous coastal aquifers, Eastern Part of Jeju Island, Korea, Water, 12(2), 609.
  •  
  • 48. Shrestha. S., Neupane, S., Mohanasundaram, S., and Pandey, V.P., 2020, Mapping groundwater resiliency under climate change scenarios: A case study of Kathmandu Valley, Nepal. Environmental Research, 183, 109149.
  •  
  • 49. Vugrin, E.D., Warren, D.E., and Ehlen, M.A., 2011, A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane, Process Safety Progress, 30(3), 280-290.
  •  
  • 50. Vugrin, E.D., Warren, D.E., Ehlen, M.A., Camphouse, R. C., 2010, A framework for assessing the resilience of infrastructure and economic systems. In Gopalakrishnan, K. and Peeta, S. (ed.) Sustainable and resilient critical infrastructure systems: Simulation, modeling, and intelligent engineering. Springer-Verlag Berlin Heidelberg, 77-116.
  •  
  • 51. Won, K.-S., Chung, S.Y., Lee, C.-S., and Jeong, J.-H., 2015, Replacement of saline water through injecting fresh water into a confined saline aquifer at the Nakdong River delta area, The Journal of Engineering Geology, 25(2), 215-225.
  •  
  • 52. Yao, Y., Zhang, M., Deng, Y., Dong, Y., Wu, X., and Kuang, X., 2021, Evaluation of environmental engineering geology issues caused by rising groundwater levels in Xi¡¯an, China, Engineering Geology, 294, 106350.
  •  
  • 53. Yihdego, Y., Danis, C., and Paffard, A., 2017, Why is the groundwater level rising? A case study using HARTT to simulate groundwater level dynamic, Water Environ Res, 89(12), 2142-2152.
  •  
  • 54. Yoon, S.C, Youn, S.H., and Suh, Y.S., 2017, The characteristics of spatio-temporal distribution on environmental factors after construction of artificial structure in the Nakdong River Estuary, J. Korean Soc. Mar. Environ. Energ, 20(1), 1-11.
  •  
  • 55. Yu, S., Kim, S.-W., Oh, C.-W., An, H., Kim, J.-M., 2015, Quantitative assessment of disaster resilience: An empirical study on the importance of post-disaster recovery costs. Reliability Engineering and System Safety 137, 6-17.
  •  
  • 56. Yu, S., Yoon, S.-M., Choi, E.-K., Kim, S.-D., Lee, Y.-J., Lee, Y., and Choi, K.-H., 2016, Quantitative assessment of national resilience: A case study of Mount Paektu eruption scenarios on South Korea, International Journal of Disaster Risk Reduction, 19, 118-132.
  •  
  • 57. Yu, S., Kim, H.-R., Yun, S.-T., Ryu, D.-W., and Yum, B.-W., 2021, Suggestion of quantitative assessment of groundwater resilience, J. Soil Groundwater Environ, 26(5), 60-76.
  •  

This Article

  • 2023; 28(3): 12-28

    Published on Jun 30, 2023

  • 10.7857/JSGE.2023.28.3.012
  • Received on Jun 8, 2023
  • Revised on Jun 21, 2023
  • Accepted on Jun 27, 2023

Correspondence to

  • Eun-Kyeong Choi
  • Geo-Information Institute, GI Co. Ltd., Busan 47598, Korea

  • E-mail: choiek@naver.com