• A Comprehensive Review of Contamination, Regulatory Trends and Remediation Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Soil Environments
  • Choi Jongbok, Na Iseul, Lee Dukyoung, and Son Younggyu*

  • Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea

  • 토양 환경 내 과불화화합물(PFAS)의 오염 현황, 규제 및 정화 기술 동향
  • 최종복ㆍ나이슬ㆍ이덕영ㆍ손영규*

  • 국립금오공과대학교 환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahrens, L., Hedlund, J., Dürig, W., Troger, R., and Wiberg, K., 2016, Screening of PFASs in groundwater and surface water, Institutionen för Vatten Och Miljö, SLU.
  •  
  • 2. Ahrens, L., Shoeib, M., Harner, T., Lee, S.C., Guo, R., and Reiner, E.J., 2011, Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere, Environ. Sci. Technol., 45(19), 8098-8105.
  •  
  • 3. Alinezhad, A., Challa Sasi, P., Zhang, P., Yao, B., Kubátová, A., Golovko, S.A., Golovko, M.Y., and Xiao, F., 2022, An investigation of thermal air degradation and pyrolysis of per-and polyfluoroalkyl substances and aqueous film-forming foams in soil, Acs EST. Eng., 2(2), 198-209.
  •  
  • 4. Anderson, R.H., Long, G.C., Porter, R.C., and Anderson, J.K., 2018, Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties, Perfluoroalkyl Substances in the Environment, CRC Press, Chapter 15.
  •  
  • 5. Battye, N.J., Patch, D.J., Roberts, D.M., O'Connor, N.M., Turner, L.P., Kueper, B.H., Hulley, M.E., and Weber, K.P., 2022, Use of a horizontal ball mill to remediate per-and polyfluoroalkyl substances in soil, Sci. Total Environ., 835, 155506.
  •  
  • 6. Becker, A.M., Gerstmann, S., and Frank, H., 2008, Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany, Environ. Pollu., 156(3), 818-820.
  •  
  • 7. Bolan, N., Sarkar, B., Yan, Y., Li, Q., Wijesekara, H., Kannan, K., Tsang, D.C.W, Schauerte, M., Bosch, J., Noll, H., Ok, Y.S., Scheckel, K., Kumpiene, J., Gobindlal, K., Kah, M., Sperry, J., Kirkham, M.B., Wang, H., Tsang, T.F., Hou, D., and Rinklebe, J., 2021, Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–to mobilize or to immobilize or to degrade?, J. Hazard. Mat., 401, 123892.
  •  
  • 8. Botelho, J.C., Kato, K., Wong, L.Y., and Calafat, A.M., 2025, Per-and polyfluoroalkyl substances (PFAS) exposure in the US population: NHANES 1999-March 2020, Environ. Res., 270, 120916.
  •  
  • 9. Bräunig, J., Baduel, C., Barnes, C.M., and Mueller, J.F., 2019, Leaching and bioavailability of selected perfluoroalkyl acids (PFAAs) from soil contaminated by firefighting activities, Sci. Total Environ., 646, 471-479.
  •  
  • 10. Brunn, H., Arnold, G., Körner, W., Rippen, G., Steinhäuser, K.G., and Valentin, I., 2023, PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites, Environ. Sci. Eur., 35(1), 1-50.
  •  
  • 11. Brusseau, M.L., Anderson, R.H., and Guo, B., 2020, PFAS concentrations in soils: background levels versus contaminated sites, Sci. Total Environ., 740, 140017.
  •  
  • 12. Chen, H., Zhang, C., Yu, Y., and Han, J., 2012, Sorption of perfluorooctane sulfonate (PFOS) on marine sediments, Mar. Pollut. Bull., 64(5), 902-906.
  •  
  • 13. Chen, H., Zhang, L., Li, M., Yao, Y., Zhao, Z., Munoz, G., and Sun, H., 2019, Per-and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: contributions of unknown precursors and short-chain (C2C3) perfluoroalkyl carboxylic acids, Water Res., 153, 169-177.
  •  
  • 14. Cousins, I.T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C.A., Patton, S., Scheringer, M., Trier, X., Vierke, L., Wang, Z., and Dewitt, J.C., 2019, The concept of essential use for determining when uses of PFASs can be phased out, Environ. Sci. Process. Impacts, 21, 1803-1815.
  •  
  • 15. D¡¯Ambro, E.L., Pye, H.O., Bash, J.O., Bowyer, J., Allen, C., Efstathiou, C., Gilliam, R.C., Reynolds, L., Talgo, K., and Murphy, B.N., 2021, Characterizing the air emissions, transport, and deposition of per-and polyfluoroalkyl substances from a fluoropolymer manufacturing facility, Environ, Sci, Technol., 55(2), 862-870.
  •  
  • 16. Darlington, R., Barth, E., and McKernan, J., 2018, The challenges of PFAS remediation, The Military Engineer, 110(712), 58-60.
  •  
  • 17. Del Vento, S., Halsall, C., Gioia, R., Jones, K., and Dachs, J., 2012, Volatile per-and polyfluoroalkyl compounds in the remote atmosphere of the western antarctic peninsula: an indirect source of perfluoroalkyl acids to antarctic waters?, Atmos. Pollut. Res., 3(4), 450-455.
  •  
  • 18. Eschauzier, C., Raat, K.J., Stuyfzand, P.J., and De Voogt, P., 2013, Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility, Sci. Total Environ., 458-460, 477-485.
  •  
  • 19. Gallen, C., Drage, D., Kaserzon, S., Baduel, C., Gallen, M., Banks, A., Broomhall, S., and Mueller, J.F., 2016, Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids, J. Hazard. Mater., 312, 55-64.
  •  
  • 20. Gan, C., Peng, M., Liu, H., and Yang, J., 2022, Concentration and distribution of metals, total fluorine, per-and poly-fluoroalkyl substances (PFAS) in vertical soil profiles in industrialized areas, Chemosphere, 302, 134855.
  •  
  • 21. García-Valcárcel, A.I., Miguel, E., and Tadeo, J.L., 2012, Determination of ten perfluorinated compounds in sludge amended soil by ultrasonic extraction and liquid chromatography-tandem mass spectrometry, Anal. Methods, 4(8), 2462-2468.
  •  
  • 22. Gauthier, S.A. and Mabury, S.A., 2005, Aqueous photolysis of 8:2 fluorotelomer alcohol. Environ, Toxicol. Chem., 24(8), 1837-1846.
  •  
  • 23. Gewurtz, S.B., Bradley, L.E., Backus, S., Dove, A., McGoldrick, D., Hung, H., and Dryfhout-Clark, H., 2019, Perfluoroalkyl acids in great lakes precipitation and surface water (2006-2018) indicate response to phase-outs, regulatory action, and variability in fate and transport processes, Environ. Sci. Technol., 53(15), 8543-8552.
  •  
  • 24. Guelfo, J.L. and Higgins, C.P., 2013, Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-Impacted sites, Environ. Sci. Technol., 47(9), 4164-4171.
  •  
  • 25. Hale, S.E., Arp, H.P.H., Slinde, G.A., Wade, E.J., Bj©ªrseth, K., Breedveld, G.D., Straith, B.F., Moe, K.G., Jartun, M., and H©ªis©¡ter, Å., 2017, Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility, Chemosphere, 171, 9-18.
  •  
  • 26. Hao, S., Choi, Y.J., Deeb, R.A., Strathmann, T.J., and Higgins, C.P., 2022, Application of hydrothermal alkaline treatment for destruction of per-and polyfluoroalkyl substances in contaminated groundwater and soil, Environ. Sci. Technol., 56(10), 6647-6657.
  •  
  • 27. Higgins, C.P., Field, J.A., Criddle, C.S., and Luthy, R.G., 2005, Quantitative determination of perfluorochemicals in sediments and domestic sludge, Environ. Sci. Technol., 39(11), 3946-3956.
  •  
  • 28. Hou, J., Li, G., Liu, M., Chen, L., Yao, Y., Fallgren, P.H., and Jin, S., 2022, Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil, Chemosphere, 287(3), 132205.
  •  
  • 29. Houtz, E.F. and Sedlak, D.L., 2012, Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff, Environ. Sci. Technol., 46(17), 9342-9349.
  •  
  • 30. Houtz, E.F., Higgins, C.P., Field, J.A., and Sedlak, D.L., 2013, Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil, Environ. Sci. Technol., 47(15), 8187-8195.
  •  
  • 31. ITRC, 2023, PFAS Technical and Regulatory Guidance Document, https://pfas-1.itrcweb.org [accessed 25.07.05]
  •  
  • 32. ITRC, 2025, PFAS Fact Sheets, https://pfas-1.itrcweb.org/fact-sheets [accessed 25.07.05]
  •  
  • 33. Johnson, G.R., 2022, PFAS in soil and groundwater following historical land application of biosolids, Water Res., 211, 118035.
  •  
  • 34. Knutsen, H., M©¡hlum, T., Haarstad, K., Slinde, G.A., and Arp, H.P.H., 2019, Leachate emissions of short- and long-chain per- and polyfluoralkyl substances (PFASs) from various Norwegian landfills, Environ. Sci. Process. Impacts, 21, 1970-1979.
  •  
  • 35. Korea Environment Corporation, 2014~2023, Monitoring data on POPs from national environmental surveillance, https://www.data.go.kr/data/15070345/fileData.do [accessed 25.07.05]
  •  
  • 36. Krause, M.J., Thoma, E., Sahle-Damesessie, E., Crone, B., Whitehill, A., Shields, E., and Gullett, B., 2022, Supercritical water oxidation as an innovative technology for PFAS destruction, J. Environ. Eng., 148(2), 05021006.
  •  
  • 37. Krippner, J., Falk, S., Brunn, H., Georgii, S., Schubert, S., and Stahl, T., 2015, Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays), J. Agric. Food Chem., 63(14), 3646-3653.
  •  
  • 38. Lang, J.R., Allred, B.M., Field, J.A., Levis, J.W., and Barlaz, M.A., 2017, National estimate of per-and polyfluoroalkyl substance (PFAS) release to US municipal landfill leachate, Environ. Sci. Technol., 51(4), 2197-2205.
  •  
  • 39. Lei, Y.J., Tian, Y., Sobhani, Z., Naidu, R., and Fang, C., 2020, Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate, Chem. Eng., J., 388, 124215.
  •  
  • 40. Lindstrom, A.B., Strynar, M.J., Delinsky, A.D., Nakayama, S.F., McMillan, L., Libelo, E.L., Neill, M., and Thomas, L., 2011, Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur, Alabama, USA, Environ. Sci. Technol., 45(19), 8015-8021.
  •  
  • 41. Liu, Y., Blowes, D.W., Ptacek, C.J., and Groza, L.G., 2019, Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar, Sci. Total Environ., 691, 165-177.
  •  
  • 42. Liu, M., Munoz, G., Vo Duy, S., Sauvé, S., and Liu, J., 2021, Per-and polyfluoroalkyl substances in contaminated soil and groundwater at airports: a Canadian case study, Environ. Sci. Technol., 56(2), 885-895.
  •  
  • 43. Loganathan, N. and Wilson, A.K., 2022, Adsorption, structure, and dynamics of short-and long-chain PFAS molecules in kaolinite: molecular-level insights, Environ. Sci. Technol., 56(12), 8043-8052.
  •  
  • 44. Ma, D., Zhong, H., Lv, J., Wang, Y., and Jiang, G., 2022, Levels, distributions, and sources of legacy and novel per-and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China, J. Environ. Sci., 112, 71-81.
  •  
  • 45. Mattias, S., Kikuchi, J., Wiberg, K., and Lutz, A., 2022, Spatial distribution and load of per-and polyfluoroalkyl substances (PFAS) in background soils in Sweden, Chemosphere, 295, 133944.
  •  
  • 46. McDonough, J.T., Anderson, R.H., Lang, J.R., Liles, D., Matteson, K., and Olechiw, T., 2021, Field-scale demonstration of PFAS leachability following in situ soil stabilization, ACS Omega, 7(1), 419-429.
  •  
  • 47. Munoz, G., Ray, P., Mejia-Avendano, S., Duy, S.V., Do, D.T., Liu, J., and Sauvé, S., 2018, Optimization of extraction methods for comprehensive profiling of perfluoroalkyl and polyfluoroalkyl substances in firefighting foam impacted soils, Anal. Chim. Acta., 1034, 74-84.
  •  
  • 48. Navarro, I., de la Torre, A., Sanz, P., Pro, J., Carbonell, G., and de los Ángeles Martínez, M., 2016, Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils, Environ, Res., 149, 32-39.
  •  
  • 49. Nickerson, A., Maizel, A.C., Kulkarni, P.R., Adamson, D.T., Kornuc, J.J., and Higgins, C.P., 2020, Enhanced extraction of AFFF-associated PFASs from source zone soils, Environ. Sci. Technol., 54(8), 4952-4962.
  •  
  • 50. OECD, 2013, Synthesis paper on per and polyfluorinated chemicals, https://www.oecd.org/en/publications/synthesis-paper-on-per-and-polyfluorinated-chemicals_0bc75123-en.html [accessed 25.07.05]
  •  
  • 51. Park, S., Lee, L.S., Medina, V.F., Zull, A., and Waisner, S., 2016, Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation, Chemosphere, 145, 376-383.
  •  
  • 52. Pepper, I.L., Brusseau, M.L., Prevatt, F.J., and Escobar, B.A., 2021, Incidence of PFAS in soil following long-term application of class B biosolids, Sci. Tot. Environ., 793, 148449.
  •  
  • 53. Prevedouros, K., Cousins, I.T., Buck, R.C., and Korzeniowski, S.H., 2006, Sources, fate and transport of perfluorocarboxylates, Environ. Sci. Technol., 40(1), 32-44.
  •  
  • 54. Schultz, M.M., Higgins, C.P., Huset, C.A., Luthy, R.G., Barofsky, D.F., and Field, J.A., 2006, Fluorochemical mass flows in a municipal wastewater treatment facility, Environ. Sci. Technol., 40(23), 7350-7357.
  •  
  • 55. Schymanski, E.L., Zhang, J., Thiessen, P.A., Chirsir, P., Kondic, T., and Bolton, E.E., 2023, Per-and polyfluoroalkyl substances (PFAS) in PubChem: 7 million and growing. Environ. Sci. Technol., 57(44), 16918-16928.
  •  
  • 56. Sepulvado, J.G., Blaine, A.C., Hundal, L.S., and Higgins, C.P., 2011, Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids, Environ. Sci. Technol., 45(19), 8106-8112.
  •  
  • 57. Shigei, M., Ahrens, L., Hazaymeh, A., and Dalahmeh, S.S., 2020, Per-and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan, Sci., Total Environ., 716, 137057.
  •  
  • 58. Shimizu, M.S., Mott, R., Potter, A., Zhou, J., Baumann, K., Surratt, J.D., Turpin, B., Avery, G.B., Harfmann, J., and Kieber, R.J., 2021, Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA, Environ. Sci. Technol. Lett., 8(5), 366-372.
  •  
  • 59. Sinclair, E. and Kannan, K., 2006, Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants, Environ. Sci. Technol., 40(5), 1408-1414.
  •  
  • 60. Singh, R.K., Brown, E., Thagard, S.M., and Holsen, T.M., 2021, Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor, J. Hazard. Mater., 408, 124452.
  •  
  • 61. S©ªrmo, E., Silvani, L., Bjerkli, N., Hagemann, N., Zimmerman, A.R., Hale, S.E., Hansen, B.H., Hartnik, T., and Cornelissen, G., 2021, Stabilization of PFAS-contaminated soil with activated biochar, Sci. Total Environ., 763, 144034.
  •  
  • 62. Strynar, M.J., Lindstrom, A.B., Nakayama, S.F., Egeghy, P.P., and Helfant, L.J., 2012, Pilot scale application of a method for the analysis of perfluorinated compounds in surface soils, Chemosphere, 86(3), 252-257.
  •  
  • 63. Sun, H., Gerecke, A.C., Giger, W., and Alfredo, A.C., 2010, Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland, Environ. Pollut., 159(2), 654-662.
  •  
  • 64. Tang, J., Zhang, Y., Zha, Y., Li, X., and Fan, S., 2017, Oxalate enhances desorption of perfluorooctane sulfonate from soils and sediments, Water Air Soil Pollut., 228, 462.
  •  
  • 65. USEPA, 2017, Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA), https://19january2021snapshot.epa.gov/fedfac/technical-fact-sheet-perfluorooctane-sulfonate-pfos-and-perfluorooctanoic-acid-pfoa-0_.html [accessed 25.07.05]
  •  
  • 66. USEPA, 2022, Lifetime Drinking Water Health Advisories for Four Perfluoroalkyl Substances, https://www.federalregister.gov/documents/2022/06/21/2022-13158/lifetime-drinking-water-health-advisories-for-four-perfluoroalkyl-substances [accessed 25.07.05]
  •  
  • 67. USEPA, 2024, Regional Screening Levels (RSLs) - Generic Tables, https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables [accessed 25.07.05]
  •  
  • 68. USEPA, 2025, Final PFAS National Primary Drinking Water Regulation, https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas [accessed 25.07.05]
  •  
  • 69. USEPA, 2024, TSCA Section 8(a)(7) Reporting and Recordkeeping Requirements for Perfluoroalkyl and Polyfluoroalkyl Substances, https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/tsca-section-8a7-reporting-and-recordkeeping [accessed 25.07.05]
  •  
  • 70. Venkatesan, A.K. and Halden, R.U., 2013, National inventory of perfluoroalkyl substances in archived US biosolids from the 2001 EPA national sewage sludge Survey, J. Hazard. Mater., 252-253, 413-418.
  •  
  • 71. Wang, Y., Fu, J., Wang, T., Liang, Y., Pan, Y., Cai, Y., and Jiang, G., 2010, Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China, Environ. Sci. Technol., 44(21), 8062-8067.
  •  
  • 72. Wang, Y., Kim, J., Huang, C.H., Hawkins, G., Li, K., Chen, Y., and Huang, Q., 2022, Occurrence of per-and polyfluoroalkyl substances in water: A review, Environ. Sci.: Water Res. Technol., 8(6), 1136-1151.
  •  
  • 73. Washington, J.W., Yoo, H., Ellington, J.J., Jenkins, T.M., and Libelo, E.L., 2010, Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA, Environ. Sci. Technol., 44(22), 8390-8396.
  •  
  • 74. Webster, E. and Ellis, D.A., 2010, Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids, Environ. Toxicol. Chem., 29(8), 1703-1708.
  •  
  • 75. Webster, E.M. and Ellis, D.A., 2012, Understanding the atmospheric measurement and behavior of perfluorooctanoic acid, Environ. Toxicol. Chem., 31(9), 2041-2046.
  •  
  • 76. WHO, 2023, IARC Monographs evaluate the carcinogenicity of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), https://www.iarc.who.int/news-events/iarc-monographs-evaluate-the-carcinogenicity-of-perfluorooctanoic-acid-pfoa-and-perfluorooctanesulfonic-acid-pfos [accessed 25.07.05]
  •  
  • 77. Wong, F., Shoeib, M., Katsoyiannis, A., Eckhardt, S., Stohl, A., Bohlin-Nizzetto, P., Li, H., Fellin, P., Su, Y., and Hung, H., 2018. Assessing temporal trends and source regions of perand polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP), Atmos. Environ., 172, 65-73.
  •  
  • 78. Xiao, F., Simcik, M.F., Halbach, T.R., and Gulliver, J.S., 2015, Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: migration and implications for human exposure, Water Res., 72, 64-74.
  •  
  • 79. Xie, Z., Wang, Z., Mi, W., Moller, A., Wolschke, H., and Ebinghaus, R., 2015, Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic, Sci. Rep., 5, 1-6.
  •  
  • 80. Yan, H., Cousins, I.T., Zhang, C., and Zhou, Q., 2015, Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater, Sci. Total Environ., 524-525, 23-31.
  •  
  • 81. Young, C.J., Furdui, V.I., Franklin, J., Koerner, R.M., Muir, D.C., and Mabury, S.A., 2007, Perfluorinated acids in arctic snow: new evidence for atmospheric formation, Environ. Sci. Technol., 41(10), 3455-3461.
  •  
  • 82. Yu, Q., Zhang, R., Deng, S., Huang, J., and Yu, G., 2009, Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study, Water Res. 43(4), 1150-1158.
  •  
  • 83. Zhan, J., Zhang, A., Héroux, P., Guo, Y., Sun, Z., Li, Z., Zhao, J., and Liu, Y., 2020, Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma, J. Hazard. Mater., 387, 121688.
  •  
  • 84. Zhang, S., Lu, X., Wang, N., and Buck, R.C., 2016, Biotransformation potential of 6:2 fluorotelomer sulfonate (6: 2 FTSA) in aerobic and anaerobic sediment, Chemosphere, 154, 224-230.
  •  

This Article

  • 2025; 30(4): 23-36

    Published on Aug 28, 2025

  • 10.7857/JSGE.2025.30.4.023
  • Received on Jul 5, 2025
  • Revised on Jul 17, 2025
  • Accepted on Aug 8, 2025

Correspondence to

  • Son Younggyu
  • Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea

  • E-mail: yson@kumoh.ac.kr