• Application of Superconducting Gravimeters for Evaluating Groundwater Storage
  • John J. Oh1, Sung-Wook Kim2, Soonyoung Yu3*, Jehyun Shin3, Seho Hwang3,
    and Sungchan Choi2

  • 1National Institute for Mathematical Sciences, Daejeon 34047, Republic of Korea
    2Geo-Information Institute, GI Co. Ltd., Busan 47598, Korea
    3Korea institute of Geoscience and mineral resources, Daejeon 34132, Republic of Korea

  • 지하수 부존량 평가를 위한 초전도중력계 활용
  • 오정근1ㆍ김성욱2ㆍ유순영3*ㆍ신제현3ㆍ황세호3ㆍ최승찬2

  • 1국가수리과학연구소 공공기반연구부, 2(주)지아이 지반정보연구소, 3한국지질자원연구원 지하수자원연구센터

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Chen, K.H., Hwang, C., Chang, L.C., and Ke, C.C., 2018, Short-time geodetic determination of aquifer storage coefficient in Taiwan. Journal of Geophysical Research: Solid Earth, 123(3), 10,987-11,015.
  •  
  • 2. Chen, K.H., Hwang, C., Chang, L.C., and Tanaka, Y., 2021, Infiltration coefficient, percolation rate and depth-dependent specific yields estimated from 1.5 years of absolute gravity observations near a recharge lake in Pingtung, Taiwan. Journal of Hydrology, 603(Part C), 127089.
  •  
  • 3. Chen, K.H., Hwang, C., Chang, L.C., Tsai, J.P., Yeh, T.C.J., Cheng, C.C., Ke, C.C., and Feng, W., 2020, Measuring aquifer specific yields with absolute gravimetry: result in the Choushui River Alluvial Fan and Mingchu Basin, central Taiwan. Water Resources Research, 56(9), e2020WR027261.
  •  
  • 4. Chen, K.H., Hwang, C., Tanaka, Y., and Chang, P.Y., 2023, Gravity estimation of groundwater mass balance of sandy aquifers in the land subsidence-hit region of Yunlin County, Taiwan. Engineering Geology, 315(20), 107021.
  •  
  • 5. Christiansen, L., Lund, S., Andersen, O.B., Binning, P.J., Rosbjerg, D., and Bauer-Gottwein, P., 2011, Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions. Journal of Hydrology, 402(1-2), 60-70.
  •  
  • 6. Creutzfeldt, B., Güntner, A., Klügel, T., and Wziontek, H., 2008, Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany. Geophysics, 73(6), WA95-WA104
  •  
  • 7. Crossley, D. and Hinderer, J., 2009, A review of the GGP network and scientific challenges. Journal of Geodynamics, 48(3-5), 299-304.
  •  
  • 8. Dehghan, M.J., Son, E.J., Woo, I., Kim, H., You, S.M., Oh, J.J., Kim, J.C., Dorjsuren, A., and Kim, J.W., 2025, Installation, calibration, and data processing of the superconducting gravimeter at the new deep underground lab in Korea. Pure Appl. Geophys., 182, 1545-1562.
  •  
  • 9. Eom, J.-Y., Seo, K.-W., Koo, M.-H., and Kwon, B.-D., 2009, Observation of gravity changes associated with variations of ground water table. Proceeding of Korean Society of Earth and Exploration Geophysicists, Korean Society of Earth and Exploration Geophysicists, Jeonbuk National University, South Korea, p.119-123.
  •  
  • 10. Gehman, C.L., Harry, D.L., Sanford, W.E., Stednick, J.D., and Beckman, N.A., 2009, Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys. Water Resources Research, 45(4), W00D21.
  •  
  • 11. Goodkind, J.M., 1999, The superconducting gravimeter. Review of Scientific Instruments, 70(11), 4131-4152.
  •  
  • 12. GWR Instruments, INC., 2010, Superconducting Gravity Meter: A new hydrological tool, https://www.gwrinstruments.com/pdf/hydrology.pdf [accessed 25.07.19]
  •  
  • 13. GWR Instruments, INC., 2011, Operating Principles of the Superconducting Gravity Meter. https://www.gwrinstruments. com/pdf/principles-of-operation.pdf [accessed 25.07.19]
  •  
  • 14. Hinderer, J., Crossley, D., and Warburton, R., 2007, Superconducting gravimetry. In T. Herring and G. Schubert (ed.), Treatise on Geophysics, Elsevier, The Netherlands, p. 65-122.
  •  
  • 15. Hinderer, J., de Linage, C., Boy, J.-P., Gegout, P., Masson, F., Rogister, Y., Amalvict, M., Pfeffer, J., Littel, F., Luck, B., Bayer, R., Champollion, C., Collard, P., Le Moigne, N., Diament, M., Deroussi, S., de Viron, O., Biancale, R., Lemoine, J.-M., Bonvalot, S., Gabalda, G., Bock, O., Genthon, P., Boucher, M., Favreau, G., Séguis, L., Delclaux, F., Cappelaere, B., Oi, M., Descloitres, M., Galle, S., Laurent, J.-P., Legchenko, A., and Bouin, M.-N., 2009, The GHYRAF (Gravity and Hydrology in Africa) experiment: Description and first results. Journal of Geodynamics, 48(3-5), 172-181.
  •  
  • 16. Jacob, T., Bayer, R., Chéry, J., and Le Moigne, N., 2010, Time-lapse microgravity surveys reveal water storage heterogeneity in a karst aquifer. Journal of Geophysical Research: Solid Earth, 115(B6), B06402.
  •  
  • 17. Jeon, H.-T., Hamm, S.-Y., Jo, Y.-H., Kim, J., Park, S., and Cheong, J.-Y., 2019, Study of groundwater recharge rate change by using groundwater level and GRACE data in Korea. The Journal of Engineering Geology, 29(3), 265-277.
  •  
  • 18. Kennedy, J.R., Pool, D.R., and Carruth, R.L., 2021, Procedures for field data collection, processing, quality assurance and quality control, and archiving of relative- and absolute-gravity surveys, https://doi.org/10.3133/tm2D4 [accessed 25.07.19]
  •  
  • 19. Kim, T.H., Neumeyer, J., Woo, I., Park, H.J., and Kim, J.W., 2007, Installation and data analysis of superconducting gravimeter in MunGyung, Korea; Preliminary results. Eco. Environ. Geol. 40(4), 445-459.
  •  
  • 20. Lien, T., Chang, E.T., Hwang, C., Cheng, C.-C., Chen, R.-F., and Mu, C.-H., 2022, Delineating a volcanic aquifer using groundwater-induced gravity changes in the Tatun volcano group, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33, 31.
  •  
  • 21. Murty, B.V.S. and Raghavn, V.K., 2002, The gravity method in groundwater exploration in crystalline rocks: a study in the peninsular granitic region of Hyderabad, India. Hydrogeology Journal, 10, 307-321.
  •  
  • 22. Park, K.S., Kim, Y.D., Bang K.M., Park, H.K., Lee, M.H., So, J., Kim, S.H., Jang, J.H., Kim, J.H., and Kim, S.B., 2024, Construction of Yemilab. Frontiers in Physics,12, 1323991.
  •  
  • 23. Pendiuk, J., Degano, M.F., Guarracino, L., and Rivas, R.E., 2023, Superconducting gravimeters: A novel tool for validating remote sensing evapotranspiration products. Hydrology, 10(7), 146.
  •  
  • 24. Pool, D.R. and Eychaner, J.H., 1995, Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water, 33(3), 425-432.
  •  
  • 25. Prothero, W. and Goodkind, J.M., 1968, A superconducting gravimeter. Review of Scientific Instruments, 39(8), 1257-1262.
  •  
  • 26. Rodell, M., Velicogna, I., and Famiglietti, J.S., 2009, Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999-1002.
  •  
  • 27. Son, E.J., Kim, J.W., Oh, J.J., Kim, H., Hwang, C., Cheng, C.-C., Ito, Y., Tanaka, Y., Shen, W., Luan, W., Hu, M., Liu, Z., Sun, H., Chen, X., Bae, S., and Yoon, H., 2024, ENIGMA: East-asian network initiative for gravity measurement alliance: A proposal and science cases, EGU General Assembly 2024, Vienna, Austria, https://doi.org/10.5194/egusphere-egu24-3305 [accessed 25.07.19]
  •  
  • 28. Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C., 2017, Geophysics from terrestrial time-variable gravity measurements. Reviews of Geophysics, 55(4), 938-992.
  •  
  • 29. Van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeeck, K., Meurers, B., van Dam, T., and Dassargues, A., 2006, Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. Journal of Geophysical Research: Solid Earth,111,B10403.
  •  
  • 30. Van Camp, M., Hendrickx, M., Castelein, S., and Martin, H., 2021, Superconducting gravimeter data from membach. https://doi.org/10.5880/igets.mb.l1.001 [accessed 25.07.19]
  •  
  • 31. Voigt, C., Schulz, K., Koch, F., Wetzel, K.-F., Timmen, L., Rehm, T., Pflug, H., Stolarczuk, N., Förste, C., and Flechtner, F., 2021, Technical note: Introduction of a superconducting gravimeteras novel hydrological sensor for the Alpine research catchment Zugspitze. Hydrol. Earth Syst. Sci., 25, 5047-5064.
  •  
  • 32. Wilson, C.R., Llubes, M., van Dam, T., and Larson, K.M., 2012a, Field test of the superconducting gravimeter as a hydrologic sensor. Ground Water, 50(1), 160-170.
  •  
  • 33. Wilson, C.R., Scanlon, B., Sharp, J.M., Longuevergne, L., and Wu, H., 2012b, Field test of the superconducting gravimeter as a hydrologic sensor. Ground Water, 50(3), 442-449.
  •  

This Article

  • 2025; 30(4): 37-52

    Published on Aug 28, 2025

  • 10.7857/JSGE.2025.30.4.037
  • Received on Jul 5, 2025
  • Revised on Jul 16, 2025
  • Accepted on Aug 18, 2025

Correspondence to

  • Soonyoung Yu
  • Korea institute of Geoscience and mineral resources, Daejeon 34132, Republic of Korea

  • E-mail: iamysy@kigam.re.kr