• In situ Repetitive Synthesis of Fe Oxides for Enhanced Cd Stabilization in Soil: Field Demonstration
  • Hosub Lee1, Seulki Jeong2*, Jinsung An3, Daeho Kim4, Kwangjin Park4, and Kyoungphile Nam1

  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, South Korea
    2Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
    3Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea
    4Daeil Engineering & Consulting Co., LTD

  • 원위치 철산화물 반복합성법을 이용한 토양 내 카드뮴 안정화 효율 향상 및 현장 실증
  • 이호섭1ㆍ정슬기2*ㆍ안진성3ㆍ김대호4ㆍ박광진4ㆍ남경필1

  • 1서울대학교 건설환경공학부
    2세종대학교 환경융합공학과
    3한양대학교 ERICA 건설환경공학부
    4(주)대일이앤씨

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Contin, M., Mondini, C., Leita, L., Zaccheo, P., Crippa, L., and De Nobili, M., 2008, Immobilisation of soil toxic metals by repeated additions of Fe(II) sulphate solution. Geoderma, 147(3-4), 133-140.
  •  
  • 2. Cornell, R.M. and Schwertmann, U., 2003, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, Weinheim.
  •  
  • 3. Dai, C. and Hu, Y. 2015, Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): Metal hydrolysis and adsorption. Environ. Sci. Technol., 49(1), 292-300.
  •  
  • 4. Dai, C., Zou, X., and Hu, Y. 2016, Homogeneous and heterogeneous (Fex,Cr1-x)(OH)3 precipitation: Implications for Cr sequestration. Environ. Sci. Technol., 50(4), 1741-1749.
  •  
  • 5. Dorau, K., Pohl, L., Just, C., Höschen, C., Ufer, K., Mansfeldt, T., and Mueller, C.W., 2019, Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ condition. Environ. Sci. Technol., 53(22), 13081-13087.
  •  
  • 6. Francisco, P.C.M., Sato, T., Otake, T., Kasama, T., Suzuki, S., Shiwaku, H., and Yaita, T., 2018, Mechanisms of Se(IV) co-precipitation with ferrihydrite at acidic and alkaline conditions and its behavior during aging. Environ. Sci. Technol., 52(8), 4817-4826.
  •  
  • 7. Garcia-Muñoz, P., Fresno, F., de la Peña O¡¯Shea, V.A., and Keller, N., 2020, Ferrite materials for photoassisted environmental and solar fuels applications. Top. Curr. Chem., 378(6).
  •  
  • 8. Guo, B., Liu, B., Yang, J., and Zhang, S., 2017, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review, J. Environ. Mana., 193, 410-422.
  •  
  • 9. Hu, S., Lu, Y., Peng, L., Wang, P., Zhu, M., Dohnalkova, A.C., Chen, H., Lin, Z. Dang, Z., and Shi, Z., 2018, Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: A mechanistic and quantitative study. Environ. Sci. Technol., 52(20), 11632-11641.
  •  
  • 10. Hu, Y., Zhang, S., Zhou, Z., and Cao, Z., 2024, Heterogeneous coprecipiation of nanocrystals with metals on substrates. Acc. Chem. Res., 57(9), 1254-1263.
  •  
  • 11. Komárek, M., Vaněk, A., and Ettler, V., 2013, Chemical stabilization of metals and arsenic in contaminated soils using oxides - A review. Environ. Pollut., 172, 9-22.
  •  
  • 12. Kumpiene, J., Antelo, J., Brannvall, E., Carabante, I., Ek, K., Komarek, M., Soderberg, C., and Warell, L., 2019, In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review, Appl. Geochem., 100, 335-351.
  •  
  • 13. Ledingham, G.J., Fang, Y., and Catalano, J.G., 2024, Irreversible trace metal binding to goethite controlled by the ion size. Environ. Sci. Technol., 58(4), 2007-2016.
  •  
  • 14. Liu, L., Wang, X., Zhu, M., Ma, J., Zhang, J., Tan, W., Feng, X., Yin, H., and Liu, F., 2019, The speciation of Cd in Cd–Fe coprecipitates: Does Cd substitute for Fe in goethite structure? ACS Earth Space Chem., 3(10), 2225-2236.
  •  
  • 15. Linga, Y., Tian, L., Lu, Y., Peng, L., Wang, P., Lin, J., Cheng, T., Dang, Z., and Shi, Z., 2018. Kinetics of Cd(II) adsorption and desorption on ferrihydrite: experiments and modeling, Environ. Sci.: Processes Impacts, 20, 934-942.
  •  
  • 16. Lu, Y., Hu, S., Liang, Z., Zhu, M., Wang, Z., Wang, X., Liang, Y., Dang, Z., and Shi, Z., 2020, Incorporation of Pb(ii) into hematite during ferrihydrite transformation. Environ. Sci. Nano., 7(3), 829-841.
  •  
  • 17. Manning, B.A. and Burau, R.G., 1995, Selenium immobilization in evaporation pond sediments by in situ precipitation of ferric oxyhydroxide. Environ. Sci. Technol., 29(10), 2639-2646.
  •  
  • 18. Martin, T.A. and Kempton, J.H., 2000, In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: An experimental and modeling investigation. Environ. Sci. Technol., 34(15), 3229-3234.
  •  
  • 19. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., and Parise, J.B., 2007, The structure of ferrihydrite, a nanocrystalline material. Science, 316(5832), 1726-1729.
  •  
  • 20. Millero, F., Sotolongo, S., and Izaguirre, M., 1987, The oxidation kinetics of Fe(II) in seawater, GCA, 51(4), 793-801.
  •  
  • 21. Morgan, B. and Lahav, O., 2007, The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution-basic principles and a simple heuristic description, Chemosphere, 68(11), 2080-2084.
  •  
  • 22. Park, J., Chung, H., Kim, S.H., An, J., and Nam, K., 2020, Study on stabilization of arsenic in soil through in situ formation of amorphous Fe oxides and use of X-ray absorption spectroscopy, J. Soil Groundwater Environ., 25(2), 9-15.
  •  
  • 23. Perez, J.P.H., Tobler, D.J., Thomas, A.N., Freeman, H.M., Dideriksen, K., Radnik, J., and Benning, L.G., 2019, Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite. ACS Earth Space Chem., 3(6), 884-894.
  •  
  • 24. Pham, A.N., Rose, A.L., Feitz, A.J., and Waite, T.D., 2006, Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0-9.5 and 25¡É, GCA, 70(3), 640-650.
  •  
  • 25. Rose, A.L. and Waite, T.D., 2003, Effect of dissolved natural organic matter on the kinetics of ferrous iron oxygenation in seawater, Environ. Sci. Technol., 37(21), 4877-4886.
  •  
  • 26. Schoepfer, V.A., Lum, J.E., and Lindsay, M.B.J., 2021, Molybdenum(VI) sequestration mechanisms during iron(II)-induced ferrihydrite transformation. ACS Earth Space Chem., 5(8), 2094-2104.
  •  
  • 27. Szecsody, J.E, Burns, C.A., Moore, R.C., Fruchter, J.S., Vermeul, V.R., Williams, M.D., Girvin, D.C., McKinley, J.P., Truex, M.J., and Phillips, J.L., 2007, Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments, DOE (United States Department Of Energy), Springfield, VA.
  •  
  • 28. Tokoro, C., Kadokura, M., and Kato, T., 2020, Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: A perspective review. Adv. Powder Technol., 31(2), 859-866.
  •  
  • 29. USEPA (United States Environmetnal Portection Agengy), 1994, Method 1312 - Synthetic precipitation leaching procedure, Washington, DC.
  •  
  • 30. USEPA (United States Environmetnal Portection Agengy), 1996, Method 3052 - Microwave assisted digestion of siliceous and organically based matrices, Washington, DC.
  •  
  • 31. Wang, G., Szecsody, J.E., Avalos, N.M., Qafoku, N.P., and Freedman, V.L., 2020, In situ precipitation of hydrous ferric oxide (HFO) for remediation of subsurface iodine contamination. J. Contam. Hydrol., 235, 103705.
  •  
  • 32. Weatherill, J.S., Morris, K., Bots, P., Stawski, T.M., Janssen, A., Abrahamsen, L., Blackham, R., and Shaw, S., 2016, Ferrihydrite formation: The role of Fe13 Keggin clusters. Environ. Sci. Technol., 50(17), 9333-9342.
  •  
  • 33. Yan, J., Frierdich, A.J., and Catalano, J.G., 2022, Impact of Zn substitution on Fe(II)-induced ferrihydrite transformation pathways. GCA, 320, 143-160.
  •  
  • 34. Yeom, J.H., Kim, G., Choi, J.M., Kim, D.H., and Chang, I., 2024, Numerical analysis and laboratory study on the effective injection range of chemical stabilizaer for ground heavy metal remedation, Proceedings of the Korean Society of Civil Engineers, Jeju, South Korea, p. 17-18.
  •  
  • 35. Zhou, Y., Tang, Y., Liao, C., Su, M., and Shih, K., 2023, Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. J. Hazard. Mater., 448, 130977.
  •  
  • 36. Zhu, M., Frandsen, C., Wallace, A.F., Legg, B., Khalid, S., Zhang, H., M©ªrup, S., Banfield, J.F., and Waychunas, G.A., 2016, Precipitation pathways for ferrihydrite formation in acidic solutions. GCA, 172, 247-264.
  •  

This Article

  • 2025; 30(5): 30-40

    Published on Oct 31, 2025

  • 10.7857/JSGE.2025.30.5.030
  • Received on Aug 8, 2025
  • Revised on Aug 18, 2025
  • Accepted on Sep 8, 2025

Correspondence to

  • Seulki Jeong
  • Department of Environment and Energy, Sejong University, Seoul 05006, South Korea

  • E-mail: sjeong@sejong.ac.kr