• Evaluation of FeCl3-Based Washing Applicability for Pb-Contaminated Soils According to Stratigraphic Characteristics at a Military Shooting Range
  • Kwak, Nogil and Jae-Woo Park*

  • Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea

  • 군 사격장 층위별 특성에 따른 오염토양의 FeCl3 기반 세척 적용성 평가
  • 곽녹일ㆍ박재우*

  • 한양대학교 건설환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Broomandi, P., Guney, M., Kim, J. R., Karaca, F. (2020). Soil contamination in areas impacted by military activities: A critical review. Sustainability, 12(21), 9002.
  •  
  • 2. Cho, K., Kim, H., Purev, O., Choi, N., Lee, J. (2022). Physical separation of contaminated soil using a washing ejector based on hydrodynamic cavitation. Sustainability, 14(1), 252.
  •  
  • 3. Cho, K., Myung, E., Kim, H., Park, C., Choi, N., Park, C., (2020). Effect of soil washing solutions on simultaneous removal of heavy metals and arsenic from contaminated soil. Int. J. Environ. Res. Public Health, 17(9), 3133.
  •  
  • 4. Deng, Y., Wang, S., Beadham, I., Gao, X., Ji, M., Wang, G., Zhang, C., Ruan, W. (2023). Effect of soil washing with an amino-acid-derived ionic liquid on the properties of Cd-contaminated paddy soil. Toxics, 11(3), 288.
  •  
  • 5. Dong, H., Qiu, W., Liang, S., Wang, D., (2021). Mechanisms of FeCl3 washing for heavy-metal removal from soils: Hydrolysis, complexation and flocculation. J. Hazard. Mater., 403, 123-134.
  •  
  • 6. Duan, J., Gregory, J., (2003). Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci., 100-102, 475-502.
  •  
  • 7. Guo, X., Wei, Z., Wu, Q., Li, Q., Wu, W., Zhang, C., (2016). Enhanced removal of heavy metals from contaminated soil using FeCl©ý washing coupled with subsequent stabilization. Environ. Sci. Pollut. Res., 23, 18902-18911.
  •  
  • 8. Hou, D., Jia, X., Wang, L., McGrath, S. P., Zhu, Y.-G., Hu, Q., Zhao, F.-J., Bank, M. S., O¡¯Connor, D., Nriagu, J. (2025). Global soil pollution by toxic metals threatens agriculture and human health. Science, 388(6744), 316-321.
  •  
  • 9. Li, T., Zhu, Z., Wang, D., Yao, C., Tang, H., (2006). Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol., 168(2), 104-110.
  •  
  • 10. Ministry of Environment (2022). Enforcement Rules of the Soil Environment Conservation Act, Appendix 3: Soil Contamination Concern Standards. National Law Information Center (Republic of Korea).
  •  
  • 11. Nawrot, N., Wojciechowska, E., Matej-¨©ukowicz, K., Walkusz-Miotk, J., Pazdro, K., (2020). Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: A case study of Strzyza Stream. Environ. Geochem. Health, 42, 1469-1485.
  •  
  • 12. Niarchos, G., (2018). Electrodialytic remediation of PFAS-contaminated soil. MSc Thesis, Technical University of Denmark, Kongens Lyngby, 120 pp.
  •  
  • 13. Oriekhova, O., Stoll, S. (2014). Investigation of FeCl©ý-induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge. Colloids Surf., A: Physicochem. Eng. Asp., 461, 212-219.
  •  
  • 14. Ondrasek, G., Shepherd, J., Rathod, S., Dharavath, R., Rashid, M. I., Brtnicky, M., Shahid, M. S., Horvatinec, J., Rengel, Z., (2025). Metal contamination – A global environmental issue: Sources, implications & advances in mitigation. RSC Adv., 15(5), 3904-3927.
  •  
  • 15. Rinklebe, J., Shaheen, S. M., Tsang, D. C. W. (2020). Immobilization and phytoavailability of potentially toxic elements in contaminated soils using biochar and other amendments: A review. RSC Adv., 10, 21551-21574.
  •  
  • 16. Su, C., Meng, J., Zhou, Y., Bi, R., Chen, Z., Diao, J., Huang, Z., Kan, Z., Wang, T., (2022). Heavy metals in soils from intense industrial areas in South China: Spatial distribution, source apportionment, and risk assessment. Front. Environ. Sci., 10, 820536.
  •  
  • 17. Wang, X., Cairang, S., Du, J., Wei, Z., Wu, Q., Hu, L., Xu, M., (2025). A large-scale assessment of soil heavy metal pollution using field-collected earthworms as bio-indicators in Shaoguan, South China. Environ. Health, 3(6), 616-625.
  •  
  • 18. Zhang, W., Tong, L., Yuan, Y., Liu, Z., Huang, H., Tan, F., Qiu, R., (2010). Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metals in a contaminated soil. J. Hazard. Mater., 178(1-3), 578-587.
  •  

This Article

  • 2025; 30(5): 41-48

    Published on Oct 31, 2025

  • 10.7857/JSGE.2025.30.5.041
  • Received on Aug 25, 2025
  • Revised on Sep 29, 2025
  • Accepted on Sep 30, 2025

Correspondence to

  • Jae-Woo Park
  • Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea

  • E-mail: jaewoopark@hanyang.ac.kr