• Enhanced Weathering in Soils for Carbon Dioxide Removal: Mechanisms, Controlling Factors, and Environmental Implications
  • Seok-Soon Jeong1, Seong-Hyeon Nam1, Da-Eun Kim1, Chae-Yoon Won1, Jung-Hwan Yoon1, Jae E. Yang1,2, and Hyuck-Soo Kim1*

  • 1Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea
    2SolEnvi Inc., Chuncheon 24341, Korea

  • 이산화탄소제거를 위한 풍화촉진 기술: 원리, 영향요인 및 토양환경에의 적용
  • 정석순1ㆍ남성현1ㆍ김다은1ㆍ원채윤1ㆍ윤정환1ㆍ양재의1,2ㆍ김혁수1*

  • 1강원대학교 바이오자원환경학과, 2주식회사 쏠엔비

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abbass, K., Qasim, M.Z., Song, H., Murshed, M., Mahmood, H., and Younis, I., 2022, A review of the global climate change impacts, adaptation, and sustainable mitigation measures, Environ. Sci. Pollut. Res., 29, 42538-422559.
  •  
  • 2. Beckingham, L.E., Mitnick, E.H., Steefel, C.I., Zhang, S., Voltolini, M., Swift, A.M., Yang, L., Cole, D.R., Sheets, J.M., Ajo-Franklin, J.B., Depaolo, D.J., Mito, S., Xue, Z., 2016, Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment, Geochim. Cosmochim. Acta, 188, 310-329.
  •  
  • 3. Beerling, D.J., Epihov, D.Z., Kantola, I.B., and Banwart, S.A., 2024, Enhanced weathering in the US corn belt delivers carbon removal with agronomic benefits, PNSA, 121(9), e2319436121.
  •  
  • 4. Beerling, D.J., Kantzas, E.P., Lomas, M.R., Wade, P., Eufrasio, R.M., Renforth, P., Sarkar, B., Andrews, M.G., James, R.H., Pearce, C.R., Mercure, J.F., Pollitt, H., Holden, P.B., Edwards, N.R., Khanna, M., Koh, L., Quegan, S., Pidgeon, N.F., Janssesns, I.A., Hansen, J., and Banwart, S.A., 2020, Potential for large-scale CO2 removal via enhanced rock weathering with croplands, Nature, 583, 242-248.
  •  
  • 5. Bi, B., Li, G., Goll, D.S., Lin, L., Chen, H., Xu, T., Chen, Q., Li, C., Wang, X., Hao, Z., Fang, Y., Yuan, Z., and Lambers, H., 2024, Enhanced rock weathering increased soil phosphorus availability and altered root phosphorus-acquisition strategies, Glob. Change Biol., 30(5), e17310.
  •  
  • 6. Brantley, S.L., 2008, Kinetics of mineral dissolution, In: Brantley SL et al. (eds.), Kinetrics of Water-Rock Interaction, Springer, Singapore, 151-210.
  •  
  • 7. Brantley, S.L., and Mellott, N.P., 2000, Surface area and porosity of primary silicate minerals, Am. Min., 85, 1767-1783.
  •  
  • 8. Brantley, S.L., Shaughnessy, A., Lebedeva, M.I., and Balashov, V.N., 2023, How temperature-dependnet silicate weathering acts as Earth¡¯s geological thermostat, Science, 379, 382-389.
  •  
  • 9. Buckingham, F.L., Henderson, G.M., Holdship, P., and Renforth, P., 2022, Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK, Appl. Geochem., 147, 105482.
  •  
  • 10. Calabrese, S., Wild, B., Bertagni, M.B., Bourg, I.C., White, C., Aburto, F., Cipolla, G., Noto, L.V., and Porporato, A., 2022, Nano- to global-scale uncertainties in terrestrial enhanced weathering, Environ. Sci. Technol., 56, 15261-15272.
  •  
  • 11. Calvaruso, C., Turpault, M.P., and Frey-Klett, P., 2006, Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis, Appl. Environ. Microbiol., 72, 1258-1266.
  •  
  • 12. Casey, W.H., and Sposito, G., 1992, On the temperature dependence of mineral dissolution rates, Geochim. Cosmochim. Acta, 56, 3825-3830.
  •  
  • 13. Cho, E., and Choi, M., 2014, Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean pnensula, J. Hydrol., 516, 317-329.
  •  
  • 14. Cipolla, G., Calabrese, S., Noto, L.V., and Porporato, A., 2021, The role of hydrology on enhanced weathering for carbon sequestration II. From hydroclimatic scenarios to carbon-sequestreation efficiencies, Adv. Water Resour., 154, 103949.
  •  
  • 15. Cipolla, G., Calabrese, S., Porporato, A., and Noto, L.V., 2022. Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites, Biogeosciences, 19, 3877-3896.
  •  
  • 16. Deng, K., Yang, S., and Guo, Y., 2022, A global temperature control of silicate weathering intensity, Nat. Commun., 13, 1781.
  •  
  • 17. Fang Q., Lu, A., Hong, H., Kuzyakov, Y., Algeo, T.J., Zhao, L., Olshansky, Y., Moravec, B., Barrientes, D.M., and Chorover, J., 2023, Mineral weathering is linked to microbial priming in the criitical zone, Nat. Commun., 14, 345.
  •  
  • 18. Fawzy, S., Osamn, A.I., Doran, J., and Rooney, D.W., 2020, Strategies for mitigation of climate change: a review, Environ. Chem. Lett., 18, 2069-2094.
  •  
  • 19. Goll, D.S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S., Hartmann, J., Janssens, I., Li, W., Obersteiner, M., Penuelas, J., Tanaka, K., and Vicca, S., 2021, Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock, Nat. Geosci., 14, 545-549.
  •  
  • 20. Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R., and Oelkers, E.H., 2011, An experimental study of crystalline basalt dissolution from 2 £ pH £ 11 and temperature from 5 to 75 ¡É, G. C. A., 75, 5496-5509.
  •  
  • 21. Guntzer, F., Keller, C., and Meunier, J.D., 2012, Benefits of plant silicon for crops: a review, Agron. Sustain. Dev., 32, 201-213.
  •  
  • 22. Guo, F., Wang, Y., Zhu, H., Zhang, C., Sun, H., Fang, Z., Yang, J., Zhang, L., Mu, Y., Man, Y.B., and Wu, F., 2023, Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: a comparative field analysis of multi-agroclimatic regions in central China, Agric. Syst., 210, 103691.
  •  
  • 23. Haque, F., Khalidy, R., Chiang, Y.W., and Santos, R.M., 2023, Constraining the capacity of global croplands to CO2 drawdown via mineral weathering, ACS Earth Space Chem., 7, 1292-1306.
  •  
  • 24. Haque, F., Santos, R.M., and Chiang, Y.W., 2020, Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study, Front. Plant Sci., 11, 1012.
  •  
  • 25. Haque, F., Santos, R.M., Dutta, A., Thimmanagari, M., and Ciang, Y.W., 2019, Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth, ACS Omega, 4, 1425-1433.
  •  
  • 26. Hartmann, J., West, A.J., Renforth, P., Köhler, P., De La Rocha, C.L., Wolf-Gladrow, D.A., Dürr, H.H., and Scheffran, J., 2013, Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply, nutrients, and mitigate ocean acidification, Rev. Geophys., 51(2), 113-149.
  •  
  • 27. Heřmanská, M., Voigt, M.J., Marieni, C., Declercq, J., and Oelkers, E.H., 2023, A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals, Chem. Geol., 635, 121632.
  •  
  • 28. Holden, F.J., Davies, K., Bird, M.I., Hume, R., Green, H., Beerling, D.J., and Nelson, P.N., 2024, In-field carbon dioxide removal via weathering of crushed basalt applied to acidic tropical agricultural soil, Sci. Total Environ., 955, 176568.
  •  
  • 29. IPCC, 2022, Climate change 2022: Mitifation of climate change.
  •  
  • 30. Jariwala, H., Haque, F., Vanderburgt, S., Santos, R.M., and Chiang, Y.W., 2022, Mineral-soil-plant-nutrient synergisms of enhanced weathering for agriculture: short-term investigations using fast-weathering wollastonite skarn, Front. Plant Sci., 13, 929457.
  •  
  • 31. Kirstein, J., Hellevang, H., Haile, B.G., Gleixner, G., and Gaupp, R., 2016, Experimental determination of natural carbonate rock dissolution rates with a focus on temperature dependency, Geomorphology, 261, 30-40.
  •  
  • 32. Köhler, P., Hartmann, J., and Wolf-Gladrow, D.A., 2010, Geoengineering potential of artificially enhanced silicate weathering of olivine, PNSA, 107, 20228-20233.
  •  
  • 33. Kronnäs, V., Lucander, K., Zanchi, G., Stadlinger, N., Belyazid, S., and Akselsson, C., 2023, Effect of droughts and climate change on future soil weathering rates in Sweden, Biogeosciences, 20, 1879-1899.
  •  
  • 34. Lefebvre, D., Goglio, P., Williams, A., Manning, D.A.C., de Azevedo, A.C., Bergmann, M., Meersmans, J., and Smith, P., 2019, Assessing the potential of soil carboniation and enhanced weathering through life cycle assessment: A case study for Sao Paulo state, Brazil, J. Clean. Prod., 233, 468-481.
  •  
  • 35. Lei, K., Bucka, F.B., Teixeira, P.P.C., Buegger, F., Just, C., Kogel-Knabner, I., 2025, Balancing organic and inorganic carbon dynamics in enhanced rock weathering: implications for carbon sequestration, Glob. Chang. Biol., 31: e70186.
  •  
  • 36. Levy, C.R., Almaraz, M., Beerling, D.J., Raymond, P., Reinhar, C.T., Suhrhoff, T.J., and Taylor, L., 2024, Enhanced rock weathering for carbon removal¡ªmoniroing and mitigating potential environmental impacts on agricultural land, Environ. Sci. Technol., 58, 17215-17226.
  •  
  • 37. Li, Z., Planavsky, N.J., and Reinhard, C.T., 2024, Geospatial assessment of the cost and energy demand of feedstock grinding for enhanced rock weathering in the coterminous United Sates, Fron. Clim., 6, 1380651.
  •  
  • 38. Lindsay, W.L., and Norvell, W.A., 1978, Development of a DTPA soil test for zinc, iron, manganese, and copper, Soil Sci. Soc. Am. J., 42, 421-428.
  •  
  • 39. Ma, J., Wang, Z.Y., Stevenson, B.A., Zheng, X.J., and Li, Yan., 2013, An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils, Sci. Rep., 3, 2025.
  •  
  • 40. Moscatelli, M.C., Pisani, O., Prete, E., Cancarini, A., Benitez, E., Swelam, Y., and Balota, E.L., 2024, The beneficial use of basalt flour combined to a microbial consortium in sustainable soil management: effect on C, N, P and S cycling enzymes and microbial biomass, Catena, 237, 107820.
  •  
  • 41. Niron, H., Vienne, A., Frings, P., Poetra, R., and Vicca, S., 2024, Exploring the synergy of enhanced weathering and Bacillus subtillis: a promising strategy for sustainable agriculture, Glob. Change Biol., 30, e17511.
  •  
  • 42. Pedersen, O., Colmer, T.D., and Sand-Jensen, K., 2013, Underwater photosynthesis of submerged plants ¡ª recent advances and methods, Front. Plant Sci., 4, 140.
  •  
  • 43. Peplow, M., 2024, Enzymes boot ¡®rock weathering¡¯ to trap CO2 in soil, Nat. Biotech., 42, 1326-1328.
  •  
  • 44. Pogge von Strandmann, P.A.E., Tooley, C., Mulders, J.J.P.A., and Renforth, P., 2022, The dissolution of olivine added to soil at 4¡É: Implications for enhanced weathering in cold regions, Front. Clim., 4, 827698.
  •  
  • 45. RDA, 2021, Monitoring project on agri-environmental quality in Korea, Suwon, Korea.
  •  
  • 46. Renforth P., 2019, The negative emission potential of alkaline materials, Nat. Commun., 10, 1401.
  •  
  • 47. Renforth, P., Pogge von Strandmann, P.A.E., and Henderson, G.M., 2015, The dissolution of olivine added to soil: Implications for enhanced weathering, Appl. Geochem., 61, 109-118.
  •  
  • 48. Ribeiro, I.D.A., Volpiano, C.G., Vargas, L.K., Granada, C.E., Lisboa, B.B., and Passaglia, L.M.P., 2020, Use of mineral weathering bacteria to enhance nutrient availability in crops: A review, Front. Plant Sci., 11, 590774.
  •  
  • 49. Rinder, T. and von Hagke, C., 2021, The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal – insights from a regional assessment, J. Clean. Prod., 315, 128178.
  •  
  • 50. Skov, K., Wardman, J., Healey, M., McBride, A., Bierowiec, T., Cooper, J., Edeh, I., George, D., Kelland, M.E., Mann, J., Manning, D., Murphy, M.J., Pape, R., The, Y.A., Turner, W., Wade, P., and Liu, X., 2024. Initial agronomic benefits of enhanced weathering using basalt: A study of spring oat in a temperate climate, PLoS ONE, 19(3), e0295031.
  •  
  • 51. Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J., 2018, Potential and costs of carbon dioxide removal by enhanced weathering of rocks, Environ. Res. Lett., 13, 034010.
  •  
  • 52. Stubbs, A.R., Paulo, C., Power, I.M., Wang, B., Zeyen, N., and Wilson, S.A., 2022, Direct measurement of CO2 drawdown in mine wastes and rock powders: Implications for enhanced rock weathering, Int. J. Greenhouse Gas Control, 113, 103554.
  •  
  • 53. Taylor, L.L., Quirk, J., Thorely, R.M.S., Kharecha, P.A., Hansen, J., Ridgwell, A., Lomas, M.R., Banwart, S.A., and Beerling, D.J., 2016, Enhanced weathering strategies for stabilizing climate and averting ocean acidification, Nat. Clim. Chang., 6, 402-406.
  •  
  • 54. te Pas, E.E.E.M., Hagens, M., and Comans, R.N.J., 2023, Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2, Front. Clim., 4, 954064.
  •  
  • 55. Timmermann, T., Yip, C., Yang, Y.Y., Wemmer, K.A., Chowdhury, A., Dores, D., Takayama, T., Nademanee, S., Traag, B.A., Zamanian, K., González, B., Breecker, D.O., Fierer, N., Slessarev, E.W., and Fuenzalida-Meriz, G.A., 2025, Harnessing microbes to weather native silicates in agricultural soils for scalable carbon dioxide removal, Glob. Chang. Biol., 31, e70216.
  •  
  • 56. Vienne, A., Poblador, S., Portillo-Estrada, M., Hartmann, J., Ijiehon, S., Wade, P., and Vicca, S., 2022, Enhanced weathering using basalt rock powder: carbon sequestration, co-benefits and risks in a mesocosm study with Solanum tuberosum, Front. Clim., 4, 869456.
  •  
  • 57. Vyazovkin, S., Burnham, A.K., Favergeon, L., Koga, N., Moukhina, E., Perez-Maqueda, L.A., and Sbirrazzuoli, N., 2020, ICTAC kinetics committee recommendations for analysis of multi-step kinetics, Thermochim. Acta, 689, 178597.
  •  
  • 58. Wild, B., Gerrits, R., and Bonneville, S., 2022, The contribution of living organisms to rock weathering in the critical zone, npj Mater. Degrad., 6, 98.
  •  
  • 59. Xiao, L., Chen, B., Luo, J., Zhu, Y., Li, Y., Xu, Y., Peng, J., Liu, J., and Wei, G, 2015, Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values, Sci. Rep., 5, 7733.
  •  
  • 60. Zhao, J., Li, C., Lu, C., Deng, L., Liu, G., and Fan, M., 2022, Acidic condition accelerates cation release from purple rock in Southwestern China, Sci. Rep., 12, 11412.
  •  

This Article

  • 2025; 30(6): 1-11

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.001
  • Received on Sep 26, 2025
  • Revised on Oct 13, 2025
  • Accepted on Nov 3, 2025

Correspondence to

  • Hyuck-Soo Kim
  • Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea

  • E-mail: kimhs25@kangwon.ac.kr