• Research Trends on Biochar Application for Heavy Metal Remediation in Soil
  • Jeong Min Heo1 and Eun Hea Jho2*

  • 1Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
    2Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

  • 토양 내 중금속 저감을 위한 바이오차 활용 연구 동향
  • 허정민1ㆍ조은혜2*

  • 1전남대학교 농화학과, 2전남대학교 농생명화학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R., and Wang, M.-Q., 2021, Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications, Toxics, 9(3), 42.
  •  
  • 2. An, Q., Zhou, T., Wen, C., and Yan, C., 2023, The effects of microplastics on heavy metals bioavailability in soils: a meta-analysis, J. Hazard. Mater., 460, 132369.
  •  
  • 3. Boakye, K.O., Dodd, M., Asante, M.D., Logah, V., and Darko, G., 2025, Biochar Amendment in Remediation of Heavy Metals in Paddy Soil: A Case Study in Nobewam, Ghana, Soil Syst., 9(2), 38.
  •  
  • 4. Burachevskaya, M., Minkina, T., Bauer, T., Lobzenko, I., Fedorenko, A., Mazarji, M., Sushkova, S., Mandzhieva, S., Nazarenko, A., and Butova, V., 2023, Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal, Sci. Rep., 13(1), 2020.
  •  
  • 5. Chang, B., Huang, Z., Yang, X., Yang, T., Fang, X., Zhong, X., Ding, W., Cao, G., Yang, Y., and Hu, F., 2024, Adsorption of Pb (II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media, J. Hazard. Mater., 465, 133413.
  •  
  • 6. Chen, M., Wang, D., Xu, X., Zhang, Y., Gui, X., Song, B., and Xu, N., 2022, Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: effects of ionic strength and humic acid, Sci. Total Environ., 806, 150668.
  •  
  • 7. Chon, H.-T., Lee, J.-S., and Lee, J.-U., 2011, Heavy metal contamination of soil, its risk assessment and bioremediation, Geosyst. Eng., 14(4), 191-206.
  •  
  • 8. Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., and Liu, Y., 2016, Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment, Ecol. Eng., 93, 1-8.
  •  
  • 9. Deng, J., Wang, Y., Yu, D., Li, X., and Yue, J., 2025, Effects of heavy metals on variation in bacterial communities in farmland soil of tailing dam collapse area, Sci. Rep., 15(1), 8100.
  •  
  • 10. Diao, Y., Zhou, L., Ji, M., Wang, X., Dan, Y., and Sang, W., 2022, Immobilization of Cd and Pb in soil facilitated by magnetic biochar: metal speciation and microbial community evolution, Environ. Sci. Pollut. Res., 29(47), 71871-71881.
  •  
  • 11. Dong, X., Chu, Y., Tong, Z., Sun, M., Meng, D., Yi, X., Gao, T., Wang, M., and Duan, J., 2024, Mechanisms of adsorption and functionalization of biochar for pesticides: A review, Ecotoxicol. Environ. Saf., 272, 116019.
  •  
  • 12. Feng, X., Wang, Q., Sun, Y., Zhang, S., and Wang, F., 2022, Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil, J. Hazard. Mater., 424, 127364.
  •  
  • 13. Gotore, O., Masere, T.P., and Muronda, M.T., 2024, The immobilization and adsorption mechanisms of agro-waste based biochar: A review on the effectiveness of pyrolytic temperatures on heavy metal removal, Environ. Chem. Ecotoxicol., 6, 92-103.
  •  
  • 14. Gu, X., Guo, P., Li, Z., Xu, X., Cao, Y., Yang, G., Kuang, C., Li, X., Qing, Y., and Wu, Y., 2024, A multifunctional coconut shell biochar modified by titanium dioxide for heavy metal removal in water/soil and tetracycline degradation, J. Clean Prod., 482, 144192.
  •  
  • 15. Gupta, N., Yadav, K.K., Kumar, V., Prasad, S., Cabral-Pinto, M.M., Jeon, B.-H., Kumar, S., Abdellattif, M.H., and Alsukaibia, A.K.D., 2022, Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption, Fron. Environ. Sci., 10, 791052.
  •  
  • 16. Hassan, M., Liu, Y., Naidu, R., Parikh, S.J., Du, J., Qi, F., and Willett, I.R., 2020, Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis, Sci. Total Environ., 744, 140714.
  •  
  • 17. Hou, D., Jia, X., Wang, L., McGrath, S.P., Zhu, Y.-G., Hu, Q., Zhao, F.-J., Bank, M.S., O¡¯Connor, D., and Nriagu, J., 2025, Global soil pollution by toxic metals threatens agriculture and human health, Science, 388(6744), 316-321.
  •  
  • 18. Hussain, F., Ahmed, S., Muhammad Zaigham Abbas Naqvi, S., Awais, M., Zhang, Y., Zhang, H., Raghavan, V., Zang, Y., Zhao, G., and Hu, J., 2025, Agricultural Non-Point Source Pollution: Comprehensive Analysis of Sources and Assessment Methods, Agriculture (Basel), 15(5), 531.
  •  
  • 19. Ippolito, J.A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes-Mendizabal, T., Cayuela, M.L., Sigua, G., Novak, J., and Spokas, K., 2020, Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review, Biochar, 2(4), 421-438.
  •  
  • 20. Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., Campanaro, S., Luo, G., and Sang, W., 2022, Effects of different feedstocks-based biochar on soil remediation: A review, Environ. Pollut., 294, 118655.
  •  
  • 21. Kumar, A., Dadhwal, M., Mukherjee, G., Srivastava, A., Gupta, S., and Ahuja, V., 2024, Phytoremediation: Sustainable approach for heavy metal pollution, Scientifica (Cairo), 2024(1), 3909400.
  •  
  • 22. Kumar, R., Ivy, N., Bhattacharya, S., Dey, A., and Sharma, P., 2022, Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives, Sci. Total Environ., 836, 155619.
  •  
  • 23. Li, X., Li, R., Zhan, M., Hou, Q., Zhang, H., Wu, G., Ding, L., Lv, X., and Xu, Y., 2024, Combined magnetic biochar and ryegrass enhanced the remediation effect of soils contaminated with multiple heavy metals, Environ. Int., 185, 108498.
  •  
  • 24. Liang, M., Lu, L., He, H., Li, J., Zhu, Z., and Zhu, Y., 2021, Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review, Sustainability, 13(24), 14041.
  •  
  • 25. Liu, B., Zhao, S., Qiu, T., Cui, Q., Yang, Y., Li, L., Chen, J., Huang, M., Zhan, A., and Fang, L., 2024, Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects, Sci. Total Environ., 918, 170281.
  •  
  • 26. Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., and Xu, H., 2018, Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil, Sci. Total Environ., 645, 702-709.
  •  
  • 27. Liu, S., Xie, Z., Zhu, Y., Zhu, Y., Jiang, Y., Wang, Y., and Gao, H., 2021, Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil, Environ. Technol. Innov., 22, 101388.
  •  
  • 28. Meng, F., Wang, Y., and Wei, Y., 2025, Advancements in Biochar for soil remediation of heavy metals and/or organic pollutants, Materials, 18(7), 1524.
  •  
  • 29. Nguyen, T.T.T., Vu, T.A.N., Nguyen, D.P., Nguyen, V.H.N., Pham, T.T.H., Truong, T.T., Khieu, T.T., Nguyen, T.K.N., and Vuong, T.X., 2024, Lead and zinc chemical fraction alterations in multi-metal contaminated soil with pomelo peel biochar and biochar/apatite incubation, Mater. Res. Express, 11(4), 045602.
  •  
  • 30. Olaniran, A.O., Balgobind, A., and Pillay, B., 2013, Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies, Int. J. Mol. Sci., 14(5), 10197-10228.
  •  
  • 31. Pathak, H.K., Seth, C.S., Chauhan, P.K., Dubey, G., Singh, G., Jain, D., Upadhyay, S.K., Dwivedi, P., and Khoo, K.S., 2024, Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development, Environ. Res., 255, 119136.
  •  
  • 32. Qie, H., Ren, M., You, C., Cui, X., Tan, X., Ning, Y., Liu, M., Hou, D., Lin, A., and Cui, J., 2023, High-efficiency control of pesticide and heavy metal combined pollution in paddy soil using biochar/g-C3N4 photoresponsive soil remediation agent, Chem. Eng. J., 452, 139579.
  •  
  • 33. Qin, J., Li, J., Pei, H., Li, Q., Cheng, D., Zhou, J., Pei, G., Wang, Y., and Liu, F., 2024, Effective remediation and phytotoxicity assessment of oxytetracycline and Cd co-contaminated soil using biochar, Environ. Technol. Innov., 35, 103649.
  •  
  • 34. Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., and Beck, L., 2023, Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health, Agronomy, 13(6), 1521.
  •  
  • 35. Rizwan, M., Murtaza, G., Zulfiqar, F., Moosa, A., Iqbal, R., Ahmed, Z., Irshad, S., Khan, I., Li, T., and Chen, J., 2023, Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review, Fron. Environ. Sci., 11, 1277240.
  •  
  • 36. Roy, R., Hossain, A., Sultana, S., Deb, B., Ahmod, M.M., and Sarker, T., 2024, Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar, BMC Plant Biol., 24(1), 608.
  •  
  • 37. Saleem, I., Ahmed, S.R., Lahori, A.H., Mierzwa-Hersztek, M., Bano, S., Afzal, A., Muhammad, M.T., Afzal, M., Vambol, V., and Vambol, S., 2024, Utilizing thiourea-modified biochars to mitigate toxic metal pollution and promote mustard (Brassica campestris) plant growth in contaminated soils, J. Geochem. Explor., 257, 107331.
  •  
  • 38. Shaheen, J., Fseha, Y.H., and Sizirici, B., 2022, Performance, life cycle assessment, and economic comparison between date palm waste biochar and activated carbon derived from woody biomass, Heliyon, 8(12).
  •  
  • 39. Shi, J., Pan, X., Zhang, W., Dong, J., Zhao, Y., Ran, J., Zhou, D., Li, G., and Zheng, Z., 2025, Remediation of coastal wetland soils Co-Contaminated with microplastics and cadmium using spartina alterniflora biochar: Soil Quality, Microbial Communities, and Plant Growth Responses, Agronomy, 15(4), 877.
  •  
  • 40. Shu, Y., Li, D., Xie, T., Zhao, K., Zhou, L., and Li, F., 2025, Antibiotics-heavy metals combined pollution in agricultural soils: Sources, fate, risks, and countermeasures, Green Energy Environ., 10(5), 869-897.
  •  
  • 41. Song, Y., Deng, H., Li, W., Zhou, S., and Liu, X., 2024, Pb (II) and chlortetracycline immobilization and economy of biologically amended coastal soil, J. Contam. Hydrol., 265, 104381.
  •  
  • 42. Tang, W., Zanli, B.L.G.L., Jing, F., Hu, T., and Chen, J., 2023, Low temperature pyrolytic biochar is a preferred choice for sulfonamide-Cu (II) contaminated soil remediation in tropical climate region, Sci. Total Environ., 876, 162792.
  •  
  • 43. Tomczyk, A., Soko©©owska, Z., and Boguta, P., 2020, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Rev. Environ. Sci. Biotechnol., 19(1), 191-215.
  •  
  • 44. Viotti, P., Marzeddu, S., Antonucci, A., Décima, M.A., Lovascio, P., Tatti, F., and Boni, M.R., 2024, Biochar as alternative material for heavy metal adsorption from groundwaters: lab-scale (column) experiment review, Materials, 17(4), 809.
  •  
  • 45. Visser, E.D., Seroka, N.S., and Khotseng, L., 2024, Recent Advances in Biochar: Synthesis Techniques, Properties, Applications, and Hydrogen Production, Processes, 12(6), 1111.
  •  
  • 46. Wang, H., Xia, W., and Lu, P., 2017, Study on adsorption characteristics of biochar on heavy metals in soil, Korean J. Chem. Eng., 34, 1867-1873.
  •  
  • 47. Wang, L., Chen, H., Wu, J., Huang, L., Brookes, P.C., Rodrigues, J. L.M., Xu, J., and Liu, X., 2021, Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil, J. Hazard. Mater., 414, 125494.
  •  
  • 48. Wang, M., Jiang, X., Wei, Z., Wang, L., Song, J., and Cen, P., 2024, Enhanced cadmium adsorption dynamics in water and soil by polystyrene microplastics and biochar, Nanomaterials, 14(13), 1067.
  •  
  • 49. Wu, C., Cui, M., Xue, S., Li, W., Huang, L., Jiang, X., and Qian, Z., 2018, Remediation of arsenic-contaminated paddy soil by iron-modified biochar, Environ. Sci. Pollut. Res., 25, 20792-20801.
  •  
  • 50. Xia, Y., Deng, M., Zhang, T., Yu, J., and Lin, X., 2025, An efficient fungi-biochar-based system for advancing sustainable management of combined pollution, Environ. Pollut., 367, 125649.
  •  
  • 51. Xiao, B., Jia, J., Wang, W., Zhang, B., Ming, H., Ma, S., Kang, Y., and Zhao, M., 2023, A review on magnetic biochar for the removal of heavy metals from contaminated soils: preparation, application, and microbial response, J. Hazard. Mater. Adv., 10, 100254.
  •  
  • 52. Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., and Fu, J., 2016, Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation, Front. Plant Sci., 7, 755.
  •  
  • 53. Xu, L., Zhao, F., Xing, X., Peng, J., Wang, J., Ji, M., and Li, B.L., 2024, A review on remediation technology and the remediation evaluation of heavy metal-contaminated soils, Toxics, 12(12), 897.
  •  
  • 54. Xu, Z., Hu, Y., Guo, Z., Xiao, X., Peng, C., and Zeng, P., 2022, Optimizing pyrolysis temperature of contaminated rice straw biochar: Heavy metal (loid) deportment, properties evolution, and Pb adsorption/immobilization, J. Saudi Chem. Soc., 26(2), 101439.
  •  
  • 55. Yaashikaa, P., Kumar, P.S., Varjani, S., and Saravanan, A., 2020, A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, Biotechnol. Rep., 28, e00570.
  •  
  • 56. Zhang, X., Chen, G., Kang, J., Bello, A., Fan, Z., Liu, P., Su, E., Lang, K., Ma, B., and Li, H., 2024, ¥â-Glucosidase-producing microbial community in composting: Response to different carbon metabolic pressure influenced by biochar, Journal of Environmental Management, 349, 119506.
  •  
  • 57. Zhang, X., Gong, Z., Allinson, G., Li, X., and Jia, C., 2022, Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community, Chemosphere, 299, 134333.
  •  
  • 58. Zhao, M., Zou, G., Li, Y., Pan, B., Wang, X., Zhang, J., Xu, L., Li, C., and Chen, Y., 2025, Biodegradable microplastics coupled with biochar enhance Cd chelation and reduce Cd accumulation in Chinese cabbage, Biochar, 7(1), 31.
  •  
  • 59. Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., and Du, Q.-P., 2015, Combined toxic effects of heavy metals and antibiotics on a Pseudomonas fluorescens strain ZY2 isolated from swine wastewater, Int. J. Mol. Sci., 16(2), 2839-2850.
  •  

This Article

  • 2025; 30(6): 12-25

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.012
  • Received on Oct 7, 2025
  • Revised on Oct 20, 2025
  • Accepted on Nov 10, 2025

Correspondence to

  • Eun Hea Jho
  • Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

  • E-mail: ejho001@jnu.ac.kr