• Characteristics of Groundwater Quality and Microbial Community Changes under Seawater Intrusion in Korea
  • Hye Hyeon Kang1, Bo Seok Jeong1, Kyungmin Kim1, Suyeon Kwon1, Yun Kyung Lee1, and Seulki Jeong1,2*

  • 1Department of Environment & Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
    2Department of Environment and Energy, Center for Earth and Environment Research, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

  • 해수 침투에 따른 국내 지하수 수질 및 미생물 군집 변화의 연구 동향과 특성 분석
  • 강혜현1ㆍ정보석1ㆍ김경민1ㆍ권수연1ㆍ이윤경1ㆍ정슬기1,2*

  • 1세종대학교 환경융합공학과, 2세종대학교 환경융합공학과, 지구환경연구소

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Appelo, C.A.J. and Postma, D., 2005, Geochemistry, Groundwater and Pollution, 2nd ed., CRC Press.
  •  
  • 2. Ataie-Ashtiani, B. and Ketabchi, H., 2011, Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers, Water Resour. Manage., 25, 165-190.
  •  
  • 3. Badaruddin, S., Werner, A.D., and Morgan, L.K., 2017, Characteristics of active seawater intrusion. Journal of Hydrology, 551, 632-647.
  •  
  • 4. Canfield, D.E., Kristensen, E., and Thamdrup, B., 2010, Aquatic geomicrobiology, K. N. Timmis, Handbook of Hydrocarbon and Lipid Microbiology, Springer, 105-137.
  •  
  • 5. Cao, T., Han, D., and Song, X., 2021, Past, present, and future of global seawater intrusion research: A bibliometric analysis, J. Hydrol., 603, 126844.
  •  
  • 6. Capuano, R.M. and Jones, C.R., 2020, Cation exchange in groundwater–chemical evolution and prediction of paleo‐groundwater flow: A natural‐system study, Water Resources. Research., 56(8), e2019WR026318.
  •  
  • 7. Chatton, E., Aquilina, L., Petelet-Giraud, E., Cary, L., Bertrand, G., Labasque, T., and Kloppmann, W., 2016, Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil), Sci. Total Environ., 569, 1114-1125.
  •  
  • 8. Chen, L., Hu, B.X., Dai, H., Zhang, X., Xia, C.A., and Zhang, J., 2019a, Characterizing microbial diversity and community composition of groundwater in a salt-freshwater transition zone, Sci. Total Environ., 678, 574-584.
  •  
  • 9. Chen, L., Ma, M., Qian, X., Li, X., Cheng, L., and Hu, B.X., 2023, Simulation of the effects of different seawater mixing proportions and different salt-freshwater displacement intensities on coastal aquifer microbial community, SSRN, 4333547.
  •  
  • 10. Chen, L., Tsui, M.M.P., Lam, J.C.W., Hu, C., Wang, Q., Zhou, B., and Lam, P.K.S., 2019b, Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors, Sci. Total Environ., 660, 136-144.
  •  
  • 11. Chen, L., Zhang, J., Dai, H., Hu, B.X., Tong, J., Gui, D., and Xia, C., 2020, Comparison of the groundwater microbial community in a salt-freshwater mixing zone during the dry and wet seasons, J. Environ. Manage., 271, 110969.
  •  
  • 12. Chung, S.Y., Kim, T.-H., and Park, N., 2012, The influence of the surrounding groundwater by groundwater discharge from the subway tunnel at suyeong district, Busan City, J. Soil Groundw. Environ., 17, 10.7857/JSGE.2012.17.2.028.
  •  
  • 13. Chung, S.Y., Venkatramanan, S., Kim, T.H., Kim, D.S., and Ramkumar, T., 2015, Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea, Environ. Dev. Sustain., 17, 423-441.
  •  
  • 14. Daus, A., 2019, Aquifer storage and recovery: Improving water supply security in the Caribbean opportunities and challenges
  •  
  • 15. Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., and Fierer, N., 2018, A global atlas of the dominant bacteria found in soil, Science, 359(6373), 320-325.
  •  
  • 16. Don, N.C., Hang, N.T.M., Araki, H., Yamanishi, H., and Koga, K., 2006, Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain, Agric. Water Manage., 84(3), 295-304.
  •  
  • 17. Fang, Y., Liu, J., Yang, J., Wu, G., Hua, Z., Dong, H., Hedlund, B.P., Baker, B.J., and Jiang, H., 2022, Compositional and metabolic responses of autotrophic microbial community to salinity in lacustrine environments. Msystems, 7(4), e00335-22.
  •  
  • 18. Griebler, C. and Lueders, T., 2009, Microbial biodiversity in groundwater ecosystems, Freshwater Biol., 54(4), 649-677.
  •  
  • 19. Gutierrez, T., Singleton, D.R., Berry, D., Yang, T., Aitken, M. D., and Teske, A., 2013, Oceanospirillales bacteria as the key hydrocarbon degraders in the deep-sea oil plume following the Deepwater Horizon oil spill, Environ. Microbiol., 15(5), 1513-1526.
  •  
  • 20. Han, D.M., Song, X.F., Currell, M.J., Yang, J.L., and Xiao, G.Q., 2014, Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China, J. Hydrol., 508, 12-27.
  •  
  • 21. Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3rd ed., U.S. Geological Survey, U.S. Geological Survey Water-Supply Paper 2254.
  •  
  • 22. Herlemann, D.P., Lundin, D., Andersson, A.F., Labrenz, M., and Jürgens, K., 2016, Phylogenetic signals of salinity and season in bacterial community composition across the salinity gradient of the Baltic Sea, Front. Microbiol., 7, 1883.
  •  
  • 23. Héry, M., Volant, A., Garing, C., Luquot, L., Elbaz Poulichet, F., and Gouze, P., 2014, Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion, FEMS Microbiol. Ecol., 90(3), 922-934.
  •  
  • 24. Idowu, T.E. and Lasisi, K.H., 2020, Seawater intrusion in the coastal aquifers of East and Horn of Africa: A review from a regional perspective, Sci. Afr., 8, e00402.
  •  
  • 25. Ivars-Martínez, E., et al., 2008, Comparative genomics of two ecotypes of the marine bacterium Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter, ISME J., 2(12), 1194-1212.
  •  
  • 26. Jampani, V.V., Golla, S., and Reddy, D.V., 2020, Hydrogeochemical processes governing groundwater quality in an irrigated area of a peri-urban catchment, South India, Chemosphere, 239, 124731.
  •  
  • 27. Jeen, S. W., Kang, J., Jung, H., and Lee, J., 2021, Review of seawater intrusion in western coastal regions of South Korea, Water, 13, 761.
  •  
  • 28. J©ªrgensen, B.B., 1990, A thiosulfate shunt in the sulfur cycle of marine sediments, Science, 249(4965), 152-154.
  •  
  • 29. Ju, J.W. and Yeo, I.W., 2017, Time series analysis and forecasting of electrical conductivity in coastal aquifers, Econ. Environ. Geol., 50(4), 267-276.
  •  
  • 30. Kaown, D., Koh, E.H., Mayer, B., Ju, Y., Kim, J., Lee, H.L., and Lee, K.K., 2021, Differentiation of natural and anthropogenic contaminant sources using isotopic and microbial signatures in a heavily cultivated coastal area, Environ. Pollut., 273, 116493.
  •  
  • 31. Kim, B., Hamm, S., Lee, C., Ok, S., Cha, E., and Ko, Y., 2011, Features of regional hydrogeology and groundwater distribution of volcanic rocks in Jeju Island. Journal of the Geological Society of Korea, 47(3), 263-276.
  •  
  • 32. Kim, D.M., Yun, S.T., Kwon, M.J., Mayer, B., and Kim, K.H., 2014, Assessing redox zones and seawater intrusion in a coastal aquifer in South Korea using hydrogeological, chemical and isotopic approaches, Chem. Geol., 390, 119-134.
  •  
  • 33. Kim, H.J. and Yeo, I.W., 2014, Development of the autoregressive and cross-regressive model for groundwater level prediction at Muan coastal aquifer in Korea, J. Soil Groundw. Environ., 19(4), 23-30.
  •  
  • 34. Kim, J.H., Kim, R.H., Lee, J., and Chang, H.W., 2003, Hydrogeochemical characterization of major factors affecting the quality of shallow groundwater in the coastal area at Kimje in South Korea, Environ. Geol., 44, 478-489.
  •  
  • 35. Kim, J.H., Kim, R.H., Lee, J., Cheong, T.J., Yum, B.W., and Chang, H.W., 2005, Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea, Hydrol. Process., 19(6), 1261-1276.
  •  
  • 36. Kim, J.-H., Cheong, T.-J., Ryu, J.-S., and Kim, R.-H., 2013, Characteristics of Fe Reduction Process of Shallow Groundwater in a Reclaimed Area, Kim-je, Econ. Environ. Geol., 46, 10.9719/EEG.2013.46.1.39.
  •  
  • 37. Kim, K., Rajmohan, N., Kim, H.J., Hwang, G.S., and Cho, M.J., 2004, Assessment of groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources: a stoichiometric approach, Environ. Geol., 46, 763-774.
  •  
  • 38. Kim, K.-Y., Shim, B.-W., Park, K.-H., Kim, T., Seong, H., Park, Y.-S., Koh, G.-W., and Woo, N.-C., 2005, Analysis of hydraulic gradient at coastal aquifers in eastern part of Jeju Island, Econ. Environ. Geol., 38(1), 79-89.
  •  
  • 39. Kim, R.H., Kim, J.H., Ryu, J.S., and Chang, H.W., 2006, Salinization properties of a shallow groundwater in a coastal reclaimed area, Yeonggwang, Korea, Environ. Geol., 49, 1180-1194.
  •  
  • 40. Kim, R.H., Kim, J.H., Ryu, J.S., and Koh, D.C., 2019, Hydrogeochemical characteristics of groundwater influenced by reclamation, seawater intrusion, and land use in the coastal area of Yeonggwang, Korea, Geosci. J., 23, 603-619.
  •  
  • 41. Kim, Y.T., Hyun, S.G., Cheong, J.Y., Woo, N.C., and Lee, S., 2018, Hydrogeochemistry in the coastal area during construction of geological repository, J. Hydrol., 562, 40-49.
  •  
  • 42. Korea Institute of Energy and Resources, 1978, Explanatory Text for the Dongrae and Wolnae 1:50,000 Geological Map (7019-IV/I), Korea Institute of Energy and Resources, Korea.
  •  
  • 43. Korea Institute of Energy and Resources, 1983, Explanatory Text for the Busan-Gadeok 1:50,000 Geological Map, Korea Institute of Energy and Resources, Korea.
  •  
  • 44. McDonald, R.J., Russill, N.R., Miliorizos, M., and Thomas, J.W., 1998, A geophysical investigation of saline intrusion and geological structure beneath areas of tidal coastal wetland at Langstone Harbour, Hampshire, UK. Geological Society, London, Special Publications, 130(1), 77-94.
  •  
  • 45. Lee, B.-D., Yun, U., and Sung, I.-H., 2007, Groundwater quality and contamination characteristics associated with land use in Ulsan Area, J. Soil Groundw. Environ., 12(6), 78-91.
  •  
  • 46. Lee, B.J. and Moon, S.H., 2008, Integrated approach for evaluating the characteristics of seawater intrusion using factor analysis and time series analysis: Seocheon-Gunsan area. Journal of the eological Society of Korea, 44(2), 219-232.
  •  
  • 47. Lee, E., Lim, J.W., Moon, H.S., and Lee, K.K., 2015, Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability. Environmental Earth Sciences, 73(3), 1179-1190.
  •  
  • 48. Lee, J.Y., Yi, M.J., Song, S.H., and Lee, G.S., 2008, Evaluation of seawater intrusion on the groundwater data obtained from the monitoring network in Korea, Water Int., 33(1), 127-146.
  •  
  • 49. Lee, J., Kim, J.H., Kim, H.M., and Chang, H.W., 2007, Statistical approach to determine the salinized ground water flow path and hydrogeochemical features around the underground LPG cavern, Korea, Hydrol. Process., 21(26), 3615-3626.
  •  
  • 50. Lee, S.-Y. and Eom, Y.-B., 2016, Analysis of microbial composition associated with freshwater and seawater, Biomed. Sci. Lett., 22(4), 150-159.
  •  
  • 51. Lew, S., Glińska-Lewczuk, K., Burandt, P., Kulesza, K., Kobus, S., and Obolewski, K., 2022, Salinity as a determinant structuring microbial communities in coastal lakes, Int. J. Environ. Res. Public Health, 19(8), 4592.
  •  
  • 52. Lim, S., Kim, J.-H., Lim, D., Lee, K.-K., and Lee, S.-K., 2013, Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data, J. Hydrol., 486, 294-310.
  •  
  • 53. Liu, Y., Jiao, J.J., Liang, W., and Kuang, X., 2017, Hydrogeochemical characteristics in coastal groundwater mixing zone: Field monitoring and reactive transport modeling, Appl. Geochem., 85, 49-60.
  •  
  • 54. Louca, S., Parfrey, L.W., and Doebeli, M., 2016, Decoupling function and taxonomy in the global ocean microbiome, Nat. Microbiol., 1(5), 16048.
  •  
  • 55. Ma, Z., Gao, L., Sun, M., Liao, Y., Bai, S., Wu, Z., and Li, J., 2022, Microbial diversity in groundwater and its response to seawater intrusion in Beihai City, Southern China, Front. Microbiol., 13, 876665.
  •  
  • 56. MAFRA and KRC, 2024, Annual Report on the Seawater Intrusion Monitoring Network in Korea, Korea Rural Community Corporation, Naju, Korea.
  •  
  • 57. Miao, Z., Brusseau, M.L., Carroll, K.C., Carreón-Diazconti, C., and Johnson, B., 2012, Sulfate reduction in groundwater: characterization and applications for remediation, Environ. Geochem. Health, 34, 539-550.
  •  
  • 58. Park, S.C., Yun, S.T., Chae, G.T., Yoo, I.S., Shin, K.S., Heo, C.H., and Lee, S.K., 2005, Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea, J. Hydrol., 313(3-4), 182-194.
  •  
  • 59. Park, Y.S., Kim, J.K., and Kim, J., 2001, Petrochemistry of granitoids in the Younggwang-Kimje area, Korea, Econ. Environ. Geol., 34(1), 55-70.
  •  
  • 60. Pearman, J.K., Sissons, J., Kihika, J.K., Thomson-Laing, G., and Wood, S.A., 2025, Microbial biodiversity and metabolic functioning in sediments of coastal dune lakes on a remote island. Metabarcoding and Metagenomics, 9, e144128.
  •  
  • 61. Pernthaler, J., 2013, Freshwater microbial communities. In E. Rosenberg, E. DeLong, & S. Lory (Eds.), The Prokaryotes, Springer, 97-112.
  •  
  • 62. Sang, S., Zhang, X., Dai, H., Hu, B.X., Ou, H., and Sun, L., 2018, Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl River Delta, China, Sci. Rep., 8(1), 17317.
  •  
  • 63. Santoro, A.E., 2010, Microbial nitrogen cycling at the saltwater–freshwater interface, Hydrogeol. J., 18(1), 187-202.
  •  
  • 64. Schäfer, H., Bernard, L., Courties, C., Lebaron, P., Servais, P., Pukall, R., Stackebrandt, E., Troussellier, M., Guindulain, T., Vives-Rego, J., and Muyzer, G., 2001, Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in the genetic diversity of bacterial populations, FEMS Microbiol. Ecol., 34(3), 243–253.
  •  
  • 65. Sharan, A., Lal, A., and Datta, B., 2021, A review of groundwater sustainability crisis in the Pacific Island countries: Challenges and solutions, J. Hydrol., 603, 127165.
  •  
  • 66. Sherif, M.M. and Singh, V.P., 1999, Effect of climate change on sea water intrusion in coastal aquifers, Hydrol. Process., 13(8), 1277-1287.
  •  
  • 67. Shin, K., Koh, D.C., Jung, H., and Lee, J., 2020, The hydrogeochemical characteristics of groundwater subjected to seawater intrusion in the Archipelago, Korea, Water, 12(6), 1542.
  •  
  • 68. Sola, F., Vargas-García, M. del C., and Vallejos, A., 2020, Interrelation prokaryotic community–aquifer in a carbonate coastal environment, Aquat. Sci., 82(13).
  •  
  • 69. Song, T., Liang, Q., Du, Z., Wang, X., Chen, G., Du, Z., and Mu, D., 2022, Salinity gradient controls microbial community structure and assembly processes in multi-pond salterns, Genes, 13(2), 385.
  •  
  • 70. Telahigue, F., Mejri, H., Mansouri, B., Souid, F., Agoubi, B., Chahlaoui, A., and Kharroubi, A., 2020, Assessing seawater intrusion in arid and semi-arid Mediterranean coastal aquifers using geochemical approaches, Phys. Chem. Earth, 115, 102811.
  •  
  • 71. Teng, Y., Su, J., Wang, J., Dai, N., Li, J., Song, L., and Zuo, R., 2014, Soil microbial community response to seawater intrusion into coastal aquifer of Donghai Island, South China, Environ. Earth Sci., 72, 3329-3338.
  •  
  • 72. Unno, T., Kim, J., Kim, Y., Nguyen, S. G., Guevarra, R.B., Kim, G. P., and Sadowsky, M.J., 2015, Influence of seawater intrusion on microbial communities in groundwater, Sci. Total Environ., 532, 337-343.
  •  
  • 73. Venkatramanan, S., Chung, S.Y., Selvam, S., Lee, S.Y., and Elzain, H.E., 2017, Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS, Environmental Science and Pollution Research, 24(30), 23679-23693.
  •  
  • 74. Xiong, G., Zhu, X., Wu, J., Liu, M., Yang, Y., and Zeng, X., 2023. Seawater intrusion alters nitrogen cycling patterns through hydrodynamic behavior and biochemical reactions: Based on Bayesian isotope mixing model and microbial functional network. Science of the Total Environment, 867, 161368.
  •  

This Article

  • 2025; 30(6): 26-41

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.026
  • Received on Sep 30, 2025
  • Revised on Oct 11, 2025
  • Accepted on Nov 27, 2025

Correspondence to

  • Seulki Jeong
  • 1Department of Environment & Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
    2Department of Environment and Energy, Center for Earth and Environment Research, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

  • E-mail: sjeong@sejong.ac.kr