• Evaluation of Reaction Rates and Isotopic Fractionation during Denitrification in Organic-Based Permeable Reactive Barriers through Column Experiments
  • Gyu Hyun Han1 and Sung-Wook Jeen1,2*

  • 1Department of Environment and Energy, Jeonbuk National University
    2Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University

  • 칼럼 실험을 통한 유기물 기반 투과성 반응벽의 탈질과정 반응 속도 및 동위원소 분별 작용 평가
  • 한규현1ㆍ진성욱1,2*

  • 1전북대학교 환경에너지융합학과, 2전북대학교 지구환경과학과 & 지구환경시스템 연구소

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Amoako-Nimako, G.K., Yang, X., and Chen, F., 2021, Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives, Environ. Sci. Pollut. Res., 28(17), 21045-21064.
  •  
  • 2. Amos, R.T. and Mayer, K.U., 2006, Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling, J. Contam. Hydrol., 87(1), 123-154.
  •  
  • 3. Betlach, M.R. and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42(6), 1074-1084.
  •  
  • 4. Bilardi, S., Calabrò, P.S., and Moraci, N., 2023, A review of the hydraulic performance of permeable reactive barriers based on granular zero valent iron, Water, 15(1), 200.
  •  
  • 5. Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate‐water equilibration, Rapid Commun. Mass Spectrom., 17(16), 1835-1846.
  •  
  • 6. Buyanjargal, A., Kang, J., Lee, J.H., and Jeen, S.-W., 2023, Nitrate removal rates, isotopic fractionation, and denitrifying bacteria in a woodchip-based permeable reactive barrier system: a long-term column experiment, Environ. Sci. Pollut. Res. Int., 30(13), 36364-36376.
  •  
  • 7. Craswell, E., 2021, Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem, SN. Appl. Sci., 3(4), 518.
  •  
  • 8. Curt, M.D., Aguado, P., Sánchez, G., Bigeriego, M., and Fernández, J., 2004, Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain, Water Air Soil Pollut., 151(1), 135-142.
  •  
  • 9. Deb, S., Lewicka-Szczebak, D., and Rohe, L., 2024, Microbial nitrogen transformations tracked by natural abundance isotope studies and microbiological methods: A review, Sci. Total Environ., 926, 172073.
  •  
  • 10. Debernardi, L., De Luca, D.A., and Lasagna, M., 2008, Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability, Environ. Geol., 55(3), 539-558.
  •  
  • 11. Dincer, A.R. and Karg©¥, F., 2000, Kinetics of sequential nitrification and denitrification processes, Enzyme Microb. Technol., 27(1-2), 37-42.
  •  
  • 12. Foglar, L., Briški, F., Sipos, L., and Vuković, M., 2005, High nitrate removal from synthetic wastewater with the mixed bacterial culture, Bioresour. Technol., 96(8), 879-888.
  •  
  • 13. Gavaskar, A.R., 1999, Design and construction techniques for permeable reactive barriers, J. Hazard. Mater., 68(1-2), 41-71.
  •  
  • 14. Gibert, O., Pomierny, S., Rowe, I., and Kalin, R.M., 2008, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB), Bioresour. Technol., 99(16), 7587-7596.
  •  
  • 15. Gómez, M.A., Hontoria, E., and González-López, J., 2002, Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter, J. Hazard. Mater., 90(3), 267-278.
  •  
  • 16. Gonsalez, V.L., Dombrowski, P.M., Lee, M.D., and Ramsburg, C.A., 2023, The influence of pH on subsurface denitrification stimulated with emulsified vegetable oil, Water, 15(5), 883.
  •  
  • 17. He, Q., Zhu, Y., Li, G., Fan, L., Ai, H., Huangfu, X., and Li, H., 2017, Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters, Front. Environ. Sci. Eng., 11(6), 16.
  •  
  • 18. Huang, H., Liu, M., Wang, J., He, J., and Chen, H., 2018, Sources identification of nitrogen using major ions and isotopic tracers in Shenyang, China, Geofluids, 2018(1), 8683904.
  •  
  • 19. Humphrey Jr., C.P., Iverson, G., and O¡¯Driscoll, M., 2025, Performance Assessment of a Permeable Reactive Barrier on Reducing Groundwater Transport of Nitrate from an Onsite Wastewater Treatment System, Hydrology, 12(1), 18.
  •  
  • 20. Jeen, S.-W., Amos, R.T., and Blowes, D.W., 2012, Modeling gas formation and mineral precipitation in a granular iron column, Environ. Sci. Technol., 46(12), 6742-6749.
  •  
  • 21. Jung, H., Kim, Y.S., Yoo, J., Park, B., and Lee, J., 2021, Seasonal variations in stable nitrate isotopes combined with stable water isotopes in a wastewater treatment plant: Implications for nitrogen sources and transformation, J. Hydrol., 599, 126488.
  •  
  • 22. Jung, H., Koh, D.-C., Kim, Y.S., Jeen, S.-W., and Lee, J., 2020, Stable Isotopes of Water and Nitrate for the Identification of Groundwater Flowpaths: A Review, Water, 12(1), 138.
  •  
  • 23. Kendall, C., 1998, Tracing nitrogen sources and cycling in catchments, In: Kendall, C., McDonnell, J.J., Isotope Tracers in Catchment Hydrology, Elsevier, Amsterdam, The Netherlands, p.519-576.
  •  
  • 24. Kendall, C., Elliott, E.M., and Wankel, S.D., 2007, Tracing Anthropogenic Inputs of Nitrogen to Ecosystems, In: Michener, R. and Lajtha, K., Stable Isotopes in Ecology and Environmental Science, Wiley-Blackwell, Oxford, p. 375-449.
  •  
  • 25. Kim, I.S., Lee, K.-S., Bong, Y.-S., Ryu, J.-S., and Kim, K.J., 2012, Nitrogen and oxygen isotope analysis of nitrate using denitrification method, J. Geol. Soc. Korea., 48(4), 351-356.
  •  
  • 26. Knöller, K., Vogt, C., Haupt, M., Feisthauer, S., and Richnow, H.H., 2011, Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification, Biogeochemistry, 103(1), 371-384.
  •  
  • 27. Ko, H.N., Kang, J., and Jeen, S.-W., 2021, Removal of Nitrate in Groundwater Using Passive Treatment Systems: Evaluation of Removal Efficiency Through a Long-Term Column Experiment, J. Soil Groundw. Environ., 26(2), 17-27.
  •  
  • 28. Le, F., Li, R., Ruan, X., and Liu, C., 2023, Isotopic tracing of nitrogen source and interaction between surface water and groundwater of a small valley plain in the Zhangxi watershed, Appl. Geochem., 151, 105615.
  •  
  • 29. Li, H. and Liu, Q., 2022, Reaction medium for permeable reactive barrier remediation of groundwater polluted by heavy metals, Front. Environ. Sci., 10, 968546.
  •  
  • 30. Liu, Y., Liu, Y., Ma, L., Gong, Y., and Qian, J., 2020, Corncob PRB for on-site nitrate removal in groundwater, Arabian J. Geosci., 13(20), 1084.
  •  
  • 31. Moloantoa, K.M., Khetsha, Z.P., Van Heerden, E., Castillo, J.C., and Cason, E.D., 2022, Nitrate water contamination from industrial activities and complete denitrification as a remediation option, Water, 14(5), 799.
  •  
  • 32. Mollamohammada, S., Aly Hassan, A., and Dahab, M., 2020, Nitrate removal from groundwater using immobilized heterotrophic algae, Water Air Soil Pollut., 231(1), 26.
  •  
  • 33. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111, 243-259.
  •  
  • 34. Ortmeyer, F., Begerow, D., Guerreiro, M.A., Wohnlich, S., and Banning, A., 2021, Comparison of denitrification induced by various organic substances—Reaction rates, microbiology, and temperature effect, Water Resour. Res., 57(11), e2021WR029793.
  •  
  • 35. Osaka, K.I., Ohte, N., Koba, K., Yoshimizu, C., Katsuyama, M., Tani, M., Tayasu, I., and Nagata, T., 2010, Hydrological influences on spatiotemporal variations of ¥ä15N and ¥ä18O of nitrate in a forested headwater catchment in central Japan: Denitrification plays a critical role in groundwater, J. Geophys. Res., 115(G2).
  •  
  • 36. Qin, Y., Zhang, D., and Wang, F., 2019, Using nitrogen and oxygen isotopes to access sources and transformations of nitrogen in the Qinhe Basin, North China, Environ. Sci. Pollut. Res., 26(1), 738-748.
  •  
  • 37. Ren, C., Zhang, Q., Wang, H., and Wang, Y., 2021, Identification of sources and transformations of nitrate in the intense human activity region of North China using a multi-isotope and Bayesian model, Int. J. Environ. Res. Public Health., 18(16), 8642.
  •  
  • 38. Rust, C.M., Aelion, C.M., and Flora, J.R., 2000, Control of pH during denitrification in subsurface sediment microcosms using encapsulated phosphate buffer, Water Res., 34(5), 1447-1454.
  •  
  • 39. Sahoo, P.K., Kim, K., and Powell, M.A., 2016, Managing groundwater nitrate contamination from livestock farms: implication for nitrate management guidelines, Curr. Pollut. Rep., 2(3), 178-187.
  •  
  • 40. Sánchez Hidalgo, G.C., Ábrego-Bonilla, J., Deago, E., and Ortega Del Rosario, M.D.L.A., 2025, Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers, Hydrology, 12(4), 98.
  •  
  • 41. Skinner, S.J. and Schutte, C.F., 2006, The feasibility of a permeable reactive barrier to treat acidic sulphate-and nitrate-contaminated groundwater, Water SA, 32(2), 129-136.
  •  
  • 42. Šrajbek, M., Kranjčević, L., Kovač, I., and Biondić, R., 2022, Groundwater nitrate pollution sources assessment for contaminated wellfield, Water, 14(2), 255.
  •  
  • 43. Stylianoudaki, C., Trichakis, I., and Karatzas, G.P., 2022, Modeling groundwater nitrate contamination using artificial neural networks, Water, 14(7), 1173.
  •  
  • 44. Volokita, M., Belkin, S., Abeliovich, A., and Soares, M.I.M. (1996). Biological denitrification of drinking water using newspaper, Water Research, 30(4), 965-971.
  •  
  • 45. Ward, M.H., Jones, R.R., Brender, J.D., De Kok, T.M., Weyer, P.J., Nolan, B.T., Villanueva, C.M., and Van Breda, S.G., 2018, Drinking Water Nitrate and Human Health: An Updated Review, Int. J. Environ. Res. Public Health., 15(7), 1557.
  •  
  • 46. Zhang, Y., Shi, P., Song, J., and Li, Q., 2018, Application of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: a review, Appl. Sci., 9(1), 18.
  •  
  • 47. Zhang, Y., Li, F., Zhang, Q., Li, J., and Liu, Q., 2014, Tracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopes, Sci. Total Environ., 490, 213-222.
  •  

This Article

  • 2025; 30(6): 42-54

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.042
  • Received on Oct 2, 2025
  • Revised on Oct 17, 2025
  • Accepted on Oct 22, 2025

Correspondence to

  • Sung-Wook Jeen
  • 1Department of Environment and Energy, Jeonbuk National University
    2Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University

  • E-mail: sjeen@jbnu.ac.kr