• Recovery of Lead and Zinc from Lead-Zinc Mine Tailings Using a Fuel Cell-Based Leaching System
  • Won Jung Ju and Kyoungphile Nam*

  • Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea

  • 연료전지 기반 침출 시스템을 이용한 납·아연 광산 광미 내 납·아연 회수 연구
  • 주원정ㆍ남경필*

  • 서울대학교 건설환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Aikawa, K., Ito, M., Segawa, T., Jeon, S., Park, I., Tabelin, C.B., and Hiroyoshi, N., 2020, Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores. Minerals Engineering, 152, 106367.
  •  
  • 2. Adiansyah, J.S., Rosano, M., Vink, S., and Keir, G., 2015, A framework for a sustainable approach to mine tailings management. Journal of Cleaner Production, 108, 1050-1062.
  •  
  • 3. Chen, J., Liu, J., Hu, M., Liu, J., Yu, Y., Zhou, Y., Bao, N., Han, X., and Guo, F., 2024, Potential and characteristics of heavy metals electrokinetic removal from the copper-zinc mine tailings: Study on the simulated and actual tailings. Chemical Engineering Journal, 496, 154245.
  •  
  • 4. Chopard, A., Plante, B., Benzaazoua, M., Bouzahzah, H., and Marion, P., 2017, Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere, 166, 281-291.
  •  
  • 5. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W., and Tesfahunegn, A.A., 2020, Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, 122350.
  •  
  • 6. Hussaini, S., Tita, A.M., Kursunoglu, S., Top, S., Ichlas, Z.T., Kar, U., and Kaya, M., 2021, Pb-Zn recovery from a malic leach solution of a carbonate type ore flotation tailing by precipitation and solvent extraction. Separation and Purification Technology, 272, 118963.
  •  
  • 7. Ju, W.J., Jho, E.H., and Nam, K., 2018, Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans. Journal of Hazardous Materials, 360, 512-519.
  •  
  • 8. Ju, W.J., Jho, E.H., and Nam, K., 2025, Facilitation of pyrite dissolution through enhanced electron transfer in pyrite-fuel cells. Journal of Hazardous Materials, 490, 137788.
  •  
  • 9. Khalil, A., Ait-Khouia, Y., Beniddar, H., El Ghorfi, M., Hakkou, R., Taha, Y., and Benzaazoua, M., 2025, Sustainable reprocessing of Pb-Zn mine tailings through froth flotation for resource recovery and environmental remediation in abandoned mining regions. Minerals Engineering, 222, 109132.
  •  
  • 10. Kim, K., 2024, Global trends and implications of critical mineral supply chains [in Korean]. KIEP World Economy Brief, 24-4 Current Issue 1, Korea Institute for International Economic Policy (KIEP), Sejong, Korea.
  •  
  • 11. KMOE, 2014a, 폐기물 공정시험기준 [in Korean]. Ministry of Environment, Sejong, Korea.
  •  
  • 12. Li, Y., Kawashima, N., Li, J., Chandra, A.P., and Gerson, A.R., 2013, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Advances in Colloid and Interface Science, 197, 1-32.
  •  
  • 13. Lizama, H.M., Harlamovs, J.R., Belanger, S., and Brienne, S.H., 2003, The Teck Cominco Hydrozinc¢â process. Electrometallurgy and Environmental Hydrometallurgy, 2, 1503-1516.
  •  
  • 14. Mudd, G.M., Jowitt, S.M., and Werner, T.T., 2017, The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities. Ore Geology Reviews, 80, 1160-1190.
  •  
  • 15. Park, I., Tabelin, C.B., Jeon, S., Li, X., Seno, K., Ito, M., and Hiroyoshi, N., 2019, A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588-606.
  •  
  • 16. Qian, G., Fan, R., Short, M.D., Schumann, R.C., Li, J., Smart, R.St.C., and Gerson, A.R., 2018, The effects of galvanic interactions with pyrite on the generation of acid and metalliferous drainage. Environmental Science & Technology, 52(9), 5349-5357.
  •  
  • 17. Rouchalova, D., Rouchalova, K., Janakova, I., Cablik, V., and Janstova, S., 2020, Bioleaching of iron, copper, lead, and zinc from the sludge mining sediment at different particle sizes, pH, and pulp density using Acidithiobacillus ferrooxidans. Minerals, 10(11), 1013.
  •  
  • 18. USGS, 2018, Mineral Commodity Summaries 2018. U.S. Geological Survey, Reston, VA.
  •  
  • 19. USGS, 2024, Mineral Commodity Summaries 2024. U.S. Geological Survey, Reston, VA.
  •  
  • 20. USEPA, 1992, Method 1311: Toxicity Characteristic Leaching Procedure (TCLP). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
  •  
  • 21. USEPA, 1996, Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.
  •  
  • 22. Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., and Van Cappellen, P., 2000, The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(6), 785-790.
  •  
  • 23. Yan, J., Hu, X., He, Q., Qin, H., Yi, D., Lv, D., Cheng, C., Zhao, Y., and Chen, Y., 2021, Simultaneous enhancement of treatment performance and energy recovery using pyrite as anodic filling material in constructed wetland coupled with microbial fuel cells. Water Research, 201, 117333.
  •  
  • 24. Yang, J.-S., Lee, J.Y., Baek, K., Kwon, T.-S., and Choi, J., 2009, Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 171(1-3), 443-451.
  •  
  • 25. Ye, M., Li, G., Yan, P., Ren, J., Zheng, L., Han, D., Sun, S., Huang, S., and Zhong, Y., 2017, Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere, 185, 1189-1196.
  •  

This Article

  • 2025; 30(6): 55-62

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.055
  • Received on Oct 2, 2025
  • Revised on Oct 17, 2025
  • Accepted on Oct 22, 2025

Correspondence to

  • Kyoungphile Nam
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea

  • E-mail: kpnam@snu.ac.kr