• Immobilization of Hexavalent Chromium Through Reductive Zones Generated by Fe-bearing Clay Mineral Acting as an Electron Mediator
  • Changyu Moon1, Sang Hyun Kim2, Jaeshik Chung2, and Kyoungphile Nam1*

  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, South Korea
    2Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea

  • 철 함유 점토광물의 전자 매개를 이용한 환원구역 생성과 이를 통한 6가 크롬의 고정화
  • 문찬규1ㆍ김상현2ㆍ정재식2ㆍ남경필1*

  • 1서울대학교 건설환경공학부, 2한국과학기술연구원 물자원순환연구단

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Amonette, J.E. and Templeton, J.C., 1998. Improvements to the quantitative assay of nonrefractory minerals for Fe (II) and total Fe using 1, 10-phenanthroline. Clays and Clay Minerals, 46(1), 51-62. https://doi.org/10.1346/CCMN.1998.0460106
  •  
  • 2. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.S.C., 2004, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051
  •  
  • 3. Boparai, H.K., Comfort, S., Shea, P.J., and Szecsody, J.E., 2008, Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Chemosphere, 71(5), 933-941, https://doi.org/10.1016/j.chemosphere.2007.11.001
  •  
  • 4. Buerge, I.J. and Hug, S.J., 1997, Kinetics and pH dependence of chromium (VI) reduction by iron (II). Environmental Science & Technology, 31(5), 1426-1432. https://doi.org/10.1021/es960672i
  •  
  • 5. DesMarias, T.L. and Costa, M., 2019, Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14, 1-7. https://doi.org/10.1016/j.cotox.2019.05.003
  •  
  • 6. Du, J., Bao, J., Lu, C., and Werner, D., 2016, Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102, 73-81. https://doi.org/10.1016/j.watres.2016.06.009
  •  
  • 7. Fruchter, J.S., Amonette, J.E., and Cole, C.R., 1996, In Situ Redox Manipulation Field Injection Test Report-Hanford 100-H Area (No. PNNL--11372). Pacific Northwest National Lab., Richland, WA (United States).
  •  
  • 8. Gorski, C.A., Klüpfel, L.E., Voegelin, A., Sander, M., and Hofstetter, T.B., 2013, Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environmental Science & Technology, 47(23), 13477-13485. https://doi.org/10.1021/es403824x
  •  
  • 9. Guerra, D.J.L., Mello, I. Freitas, L.R., Resende, R.A.R., and Silva, R.A.R., 2014. Equilibrium, thermodynamic, and kinetic of Cr(VI) adsorption using a modified and unmodified bentonite clay. International Journal of Mining Science and Technology, 24(4), 525‑535. https://doi.org/10.1016/j.ijmst.2014.05.017
  •  
  • 10. Guo, H., Liu, C., Yan, S., Yin, J., and Shan, J., 2024, Source, distribution, and geochemical processes of geogenic high chromium groundwater around the world: A critical review. Journal of Hydrology, 638, 131480. https://doi.org/10.1016/j.jhydrol. 2024.131480
  •  
  • 11. He, Y.T. and Traina, S.J., 2005, Cr (VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation. Environmental Science & Technology, 39(12), 4499-4504. https://doi.org/10.1021/es0483692
  •  
  • 12. Ilgen, A.G., Kukkadapu, R.K., Leung, K., and Washington, R.E., 2019, ¡°Switching on¡± iron in clay minerals. Environmental Science: Nano, 6(6), 1704-1715. https://doi.org/10.1039/C9EN00228F
  •  
  • 13. Istok, J.D., Amonette, J.E., Cole, C.R., Fruchter, J.S., Humphrey, M.D., Szecsody, J.E., Teel, S.S., Vermeul, V.R., Williams, M.D., and Yabusaki, S.B., 1999, In situ redox manipulation by dithionite injection: Intermediate-scale laboratory experiments. Groundwater, 37(6), 884-889. https://doi.org/10.1111/j.1745-6584.1999. tb01187.x
  •  
  • 14. Joe-Wong, C., Brown Jr, G.E., and Maher, K., 2017, Kinetics and products of chromium (VI) reduction by iron (II/III)-bearing clay minerals. Environmental Science & Technology, 51(17), 9817-9825. https://doi.org/10.1021/acs.est.7b02934
  •  
  • 15. Komadel, P., Madejová, J., and Stucki, J.W., 2006, Structural Fe (III) reduction in smectites. Applied Clay Science, 34(1-4), 88-94. https://doi.org/10.1016/j.clay.2005.10.016
  •  
  • 16. Moon, C., Kim, B. C., and Nam, K., 2025, Redox behavior of structural iron by dithionite in Fe (¥²)-bearing clay minerals and its utilization as an electron shuttle for redox-sensitive contaminants. Journal of Environmental Chemical Engineering, 117250. https://doi.org/10.1016/j.jece.2025.117250
  •  
  • 17. Mullet, M., Boursiquot, S., and Ehrhardt, J.J., 2004, Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 244(1-3), 77-85. https://doi.org/10.1016/j.colsurfa. 2004.06.013
  •  
  • 18. Neumann, A., Sander, M., and Hofstetter, T.B., 2011, Redox properties of structural Fe in smectite clay minerals. In P. Tratnyek, T.B. Hofstetter, & S.M. Bornick (Eds.), Aquatic Redox Chemistry (pp. 361-379). ACS Publications. https://doi.org/10.1021/bk-2011-1071.ch017
  •  
  • 19. Ribeta, I., Ptacek, C.J., Blowes, D.W., and Jambor, J.L., 1995, The potential for metal release by reductive dissolution of weathered mine tailings. Journal of Contaminant Hydrology, 17(3), 239-273. https://doi.org/10.1016/0169-7722(94)00010-F
  •  
  • 20. Richard, F.C. and Bourg, A.C.M., 1991, Aqueous geochemistry of chromium: A review. Water Research, 25(7), 807-816. https://doi.org/10.1016/0043-1354(91)90160-R
  •  
  • 21. Stucki, J.W., Lee, K., Zhang, L., Larson, R.A., and Traina, S.J., 1996, Effects of reduction and reoxidation of structural Fe on the surface chemistry of smectite. Clays and Clay Minerals, 44(3), 450-454. https://doi.org/10.1346/CCMN.1984.0320502
  •  
  • 22. Tsarev, S., Waite, T.D., and Collins, R.N., 2016, Uranium reduction by Fe (II) in the presence of montmorillonite and nontronite. Environmental Science & Technology, 50(15), 8223-8230. https://doi.org/10.1021/acs.est.6b02000
  •  
  • 23. Vermeul, V.R., Williams, M.D., Szecsody, J.E., Fruchter, J.S., Cole, C.R., and Amonette, J.E., 2003, Creation of a subsurface permeable reactive barrier using in situ redox manipulation. In Handbook of Groundwater Remediation using Permeable Reactive Barriers (pp. 163-192). Academic Press. https://doi.org/10.1016/B978-012513563-4/50010-4
  •  
  • 24. Williams, A.G. and Scherer, M.M., 2001, Kinetics of Cr (VI) reduction by carbonate green rust. Environmental Science & Technology, 35(17), 3488-3494. https://doi.org/10.1021/es010579g
  •  
  • 25. Yu, C., Qian, A., Lu, Y., Liao, W., Zhang, P., Tong, M., Dong, H., Zeng, Q., and Yuan, S., 2024, Electron transfer processes associated with structural Fe in clay minerals. Critical Reviews in Environmental Science and Technology, 54(1), 13-38. https://doi.org/10.1080/10643389.2023.2221154
  •  
  • 26. Zulfiqar, U., Haider, F.U., Ahmad, M., Hussain, S., Maqsood, M.F., Ishfaq, M., Shahzad, B., Waqas, M.M., Ali, B., Tayyab, M.N., Ahmad, S.A., Khan, I., and Eldin, S.M., 2023, Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. Frontiers in Plant Science, 13, 1081624. https://doi.org/10.3389/fpls.2022.1081624
  •  

This Article

  • 2025; 30(6): 63-72

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.063
  • Received on Oct 10, 2025
  • Revised on Oct 21, 2025
  • Accepted on Nov 9, 2025

Correspondence to

  • Kyoungphile Nam
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, South Korea

  • E-mail: kpnam@snu.ac.kr