• Improvement of Cadmium Toxicity Assessment in Sediments under Oxidizing Condition: Incorporating Bioavailability Changes Associated with Iron Oxide Formation
  • Buyun Jeong1, Jinsung An2, and Kyoungphile Nam3*

  • 1Institue for Environment and Energy, Pusan National University
    2Department of Civil & Environmental Engineering, Hanyang University ERICA
    3Department of Civil & Environmental Engineering, Seoul National University

  • 산화 퇴적토 내 카드뮴의 독성 평가 기법 개선: 철 산화물 형성에 따른 생물학적 이용성 변화 반영
  • 정부윤1ㆍ안진성2ㆍ남경필3*

  • 1부산대학교 환경·에너지연구소, 2한양대학교 ERICA 건설환경공학과, 3서울대학교 건설환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ankley, G.T., Thomas, N.A., Di Toro, D.M., Hansen, D.J., Mahony, J.D., Berry, W.J., Swartz, R.C., Hoke, R.A., Garrison, A.W., Allen, H.E., and Zarba, C.S. (1994). Assessing potential bioavailability of metals in sediments: a proposed approach. Environ. Manage., 18, 331-337.
  •  
  • 2. Ankley, G.T., Di Toro, D.M., Hansen, D.J., and Berry, W.J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem.: An International Journal, 15(12), 2056-2066.
  •  
  • 3. Bäckström, M., Dario, M., Karlsson, S., and Allard, B. (2003). Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite. Sci. Total Environ., 304(1-3), 257-268.
  •  
  • 4. Berry, W.J., Hansen, D.J., Mahony, J.D., Robson, D.L., DiToro, D.M., Shipley, B.P., Rogers, B., Corbin, J.M., and Boothman, W.S. (1996). Predicting the toxicity of metal‐spiked laboratory sediments using acidvolatile sulfide and interstitial water normalizations. Environ. Toxicol. Chem.: An International Journal, 15(12), 2067-2079.
  •  
  • 5. Besser, J.M., Brumbaugh, W.G., Hardesty, D.K., Hughes, J.P., and Ingersoll, C.G. (2009). Assessment of metal-contaminated sediments from the Southeast Missouri (SEMO) mining district using sediment toxicity tests with amphipods and freshwater mussels. United States Geological Survey Administrative report submitted to the United States Fish and Wildlife Service, Ecological Services Office, Region, 3.
  •  
  • 6. Bruemmer, G.W., Gerth, J., and Tiller, K.G. (1988). Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. J. Soil Sci., 39(1), 37-52.
  •  
  • 7. Buekers, J., Amery, F., Maes, A., and Smolders, E. (2008). Long‐term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations. Eur. J. Soil Sci., 59(4), 706-715.
  •  
  • 8. Burton, Jr, G.A. (2002). Sediment quality criteria in use around the world. Limnol., 3, 65-75.
  •  
  • 9. Casas, A.M. and Crecelius, E.A. (1994). Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environ. Toxicol. Chem.: An International Journal, 13(3), 529-536.
  •  
  • 10. Costello, D.M., Burton, G.A., Hammerschmidt, C.R., Rogevich, E.C., and Schlekat, C.E. (2011). Nickel phase partitioning and toxicity in field-deployed sediments. Environ. Sci. Technol., 45(13), 5798-5805.
  •  
  • 11. Costello, D.M., Hammerschmidt, C.R., and Burton, G.A. (2015). Copper sediment toxicity and partitioning during oxidation in a flow-through flume. Environ. Sci. Technol., 49(11), 6926-6933.
  •  
  • 12. Dang, D.H., Layglon, N., Ferretto, N., Omanovic ́, Mullot, J.-U. Lenoble, V., Mounier, S., and Garnier, C. (2020). Kinetic processes of copper and lead remobilization during sediment resuspension of marine polluted sediments. Sci. Total Environ., 698, 134120.
  •  
  • 13. Davies-Colley, R.J., Nelson, P.O., and Williamson, K.J. (1984). Copper and cadmium uptake by estuarine sedimentary phases. Environ. Sci. Technol., 18(7), 491-499.
  •  
  • 14. De Deckere, E., De Cooman, W., Leloup, V., Meire, P., Schmitt, C., and von der Ohe, P.C. (2011). Development of sediment quality guidelines for freshwater ecosystems. J. Soils Sediments, 11, 504-517.
  •  
  • 15. DeForest, D.K., Toll, J.E., Judd, N.L., Shaw, A., McPeek, K., Tobiason, K., and Santore, R.C. (2021). Sediment toxicity data and excess simultaneously extracted metals from field‐collected samples: Comparison to United States Environmental Protection Agency benchmarks. Integr. Environ. Assess. Manag., 18(1), 174-186.
  •  
  • 16. Di Toro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Hicks, M.B., Mayr, S.M., and Redmond, M.S. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol. Chem.: An International Journal, 9(12), 1487-1502.
  •  
  • 17. Di Toro, D.M., McGrath, J.A., Hansen, D.J., Berry, W.J., Paquin, P.R., Mathew, R., Wu, K.B., and Santore, R.C. (2005). Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Environ. Toxicol. Chem.: An International Journal, 24(10), 2410-2427.
  •  
  • 18. Fairchild, J.F., Kemble, N.E., and Allert, A.L. (2012). Laboratory toxicity and benthic invertebrate field colonization of upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Arch. Environ. Contam. Toxicol., 63, 54-68.
  •  
  • 19. Feyte, S., Tessier, A., Gobeil, C., and Cossa, D. (2010). In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl. Geochem., 25(7), 984-995.
  •  
  • 20. Gambrell, R.P., Khalid, R.A., Verloo, M.G., and Patrick Jr, W.H. (1977). Transformations of Heavy Metals and Plant Nutrients in Dredged Sediments as Affected by Oxidation Reduction Potential and pH. Volume 2. Materials and Methods/Results and Discussion.
  •  
  • 21. Gardiner, J. (1974). The chemistry of cadmium in natural water—II. The adsorption of cadmium on river muds and naturally occurring solids. Water Res., 8(3), 157-164.
  •  
  • 22. Gee, G.W. and Bauder, J.W. (1986). Particle Size Analysis. Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. Klute, A.(Ed). Agronomy Monograph No. 9. 2nd Edition. American Society of Agronomy/Soil Science Society of America, Madison, WI, 383-411.
  •  
  • 23. Hübner, R., Astin, K.B., and Herbert, R.J. (2009). Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J. Environ. Monit., 11(4), 713-722.
  •  
  • 24. Jain, C.K., Malik, D.S., and Yadav, R. (2007). Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environ. Monit. Assess., 130, 129-139.
  •  
  • 25. Johnson, B.B. (1990). Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite. Environ. Sci. Technol., 24(1), 112-118.
  •  
  • 26. Kostka, J.E. and Luther III, G.W. (1994). Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim. Cosmochim. Acta, 58(7), 1701-1710.
  •  
  • 27. Kwok, K.W., Batley, G.E., Wenning, R.J., Zhu, L., Vangheluwe, M., and Lee, S. (2014). Sediment quality guidelines: challenges and opportunities for improving sediment management. Environ. Sci. Pollut. Res., 21, 17-27.
  •  
  • 28. Laxen, D.P. (1983). Cadmium adsorption in freshwaters—a quantitative appraisal of the literature. Sci. Total Environ., 30, 129-146.
  •  
  • 29. Luoma, S.N., and Davis, J.A. (1983). Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem., 12(2-3), 159-181.
  •  
  • 30. Macdonald, D.D., Carr, R.S., Calder, F.D., Long, E.R., and Ingersoll, C.G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253-278.
  •  
  • 31. Mahony, J.D., Di Toro, D.M., Gonzalez, A.M., Curto, M., Dilg, M., De Rosa, L.D., and Sparrow, L.A. (1996). Partitioning of metals to sediment organic carbon. Environ. Toxicol. Chem.: An International Journal, 15(12), 2187-2197.
  •  
  • 32. Mustafa, G., Singh, B., and Kookana, R.S. (2004). Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere, 57(10), 1325-1333.
  •  
  • 33. Navrot, J., Singer, A., and Banin, A. (1978). Adsorption of Cadmium and its Exchange Characteristics in Some Israeli Soils. J. Soil Sci., 29, 205-511.
  •  
  • 34. National Institute of Environmental Research (NIER). (2023). National protocol for biological monitoring and assessment: Benthic macroinvertebrate survey methods. Ministry of Environment, Republic of Korea.
  •  
  • 35. Nedrich, S.M. and Burton Jr, G.A. (2017). Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna. Environ. Pollut., 230, 1116-1124.
  •  
  • 36. Oakley, S.M., Nelson, P.O., and Williamson, K.J. (1981). Model of trace-metal partitioning in marine sediments. Environ. Sci. Technol., 15(4), 474-480.
  •  
  • 37. Ok, Y.S., Lee, O.M., Jung, J.H., Lim, S.K., and Kim, J.G. (2003). Soil-water partition coefficients for cadmium in some Korean soils. Korean J. Soil Sci. Fertil., 36(4), 200-209.
  •  
  • 38. Persaud, D.J.R.H.A., Jaagumagi, R., and Hayton, A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario.
  •  
  • 39. Schwertmann, U. and Cornell, R.M. (2000). Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons.
  •  
  • 40. Shine, J.P., Trapp, C.J., and Coull, B.A. (2003). Use of receiver operating characteristic curves to evaluate sediment quality guidelines for metals. Environ. Toxicol. Chem., 22(7), 1642-1648.
  •  
  • 41. Tipping, E. and Hurley, M.A. (1992). A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta, 56(10), 3627-3641.
  •  
  • 42. Tipping, E. (1993). Modeling the competition between alkaline earth cations and trace metal species for binding by humic substances. Environ. Sci. Technol., 27(3), 520-529.
  •  
  • 43. Tipping, E. (1994). WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci., 20(6), 973-1023.
  •  
  • 44. Tipping, E., Lofts, S., and Sonke, J.E. (2011). Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem., 8(3), 225-235.
  •  
  • 45. Trivedi, P. and Axe, L. (2001). Ni and Zn sorption to amorphous versus crystalline iron oxides: macroscopic studies. J. Colloid Interface Sci., 244(2), 221-229.
  •  
  • 46. Turner, A., Le Roux, S.M., and Millward, G.E. (2008). Adsorption of cadmium to iron and manganese oxides during estuarine mixing. Mar. Chem., 108(1-2), 77-84.
  •  
  • 47. USEPA (1999). Understanding variation in partition coefficient, Kd, values, Volume II: Review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium, and uranium. EPA 402-R-99-004B. USEPA, Office of Air and Radiation.
  •  
  • 48. USEPA (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, Second Edition. EPA/600/R-99/064. USEPA, Office of Water.
  •  
  • 49. USEPA (2005). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). EPA-600-R-02-011. USEPA, Office of Research and Development.
  •  
  • 50. USEPA (2007). Framework for metals risk assessment. EPA 120/R-07/001. USEPA, Office of the Science Advisor.
  •  
  • 51. USEPA (2016). Aquatic life ambient water quality criteria update for cadmium-2016. EPA 822-F-16-003. USEPA, Office of Water.
  •  
  • 52. Wang, K. and Xing, B. (2002). Adsorption and desorption of cadmium by goethite pretreated with phosphate. Chemosphere 48, 665-670.
  •  
  • 53. Yin, H., Deng, J., Shao, S., Gao, F., Gao, J., and Fan, C. (2011). Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China. Environ. Monit. Assess., 179(1), 431-442.
  •  

This Article

  • 2025; 30(6): 73-87

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.073
  • Received on Oct 10, 2025
  • Revised on Oct 17, 2025
  • Accepted on Nov 11, 2025

Correspondence to

  • Kyoungphile Nam
  • Department of Civil & Environmental Engineering, Seoul National University

  • E-mail: kpnam@snu.ac.kr