• Calibration and Evaluation of Optimal Model Parameters for Groundwater Flow Simulation in a Small Watershed
  • Su Ryeon Kim1, Jin Chul Joo2*, Hee Sun Moon3*, and Seonggyu Park4

  • 1Department of Environmental Engineering, Hanbat National University
    2Department of Civil and Environmental Engineering, Hanbat National University
    3Groundwater Environment Research Center, Climate Change Response Research Division, Korea Institute of Geoscience and Mineral Resources
    4Assistant Professor of Hydrologic Modeling, Texas Tech University, United States

  • 소규모 유역에서 지하수 유동 모델링을 위한 최적 모델 매개변수 추론 및 평가
  • 김수련1ㆍ주진철2*ㆍ문희선3*ㆍ박성규4

  • 1국립한밭대학교 환경공학과, 2국립한밭대학교 건설환경공학과, 3한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터, 4Texas Tech University

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Anderson, M.P., Woessner, W.W., and Hunt, R.J., 2015, “Applied groundwater modeling: simulation of flow and advective transport”, Academic Press, Inc., San Diego, Calif.
  •  
  • 2. Aquaveo, 2025, “Groundwater Modeling System (GMS)”, Available at: https://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction [Accessed 25.01.24]
  •  
  • 3. Bizhanimanzar, M., Leconte, R., and Nuth, M., 2020, “Catch ment-scale integrated surface water-groundwater hydrologic modelling using conceptual and physically based models: a model comparison study”, Water, 12(2), 363.
  •  
  • 4. Chung, I.M., Kim, N.W., Lee, J., and Sophocleous, M., 2010, “Assessing distributed groundwater recharge rate using integrated surface water-groundwater modeling: application to the smallscale hydrogeological system”, Hydrol. Process., 24(23), 3289-3309.
  •  
  • 5. Czarnecki, J.B., 2010. Groundwater- flow assessment of the Mississippi River Valley alluvial aquifer of northeastern Arkansas: Scientific Investigations Report 2010-5210., U.S. Geological Survey, Reston, VA.
  •  
  • 6. Grey, D. and Sadoff, C.W., 2007, “Sink or swim? Water security for growth and development”, Water Policy, 9(6), 545-571.
  •  
  • 7. Hamm, S.Y., Park, S.D., Kim, H.J., and Cheong, J.Y., 2019, “A study on groundwater flow modeling in the fluvial aquifer adjacent to theNakdong River,Book-Myeon area, Changwon City”, J. Eng. Geol., 29(1), 55-66.
  •  
  • 8. Hansen, A.L., Refsgaard, J.C., Christensen, B.S.B., and Jensen, K.H., 2013, “Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater–surface water catchment mode”, Water Resources Research, 49(1), 585-603.
  •  
  • 9. Harbaugh, A.W., 2005, MODFLOW- 2005, The U. S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6–A16, U.S. Geological Survey, Reston, VA.
  •  
  • 10. Hill, M.C., and Tiedeman, C.R., 2007, Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities,
  •  
  • 11. Predictions, and Uncertainty, John Wiley & Sons, Hoboken, NJ.
  •  
  • 12. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Yamamoto, T., Wester, P., and Kanae, S., 2013, “Global flood risk under climate change”, Nature Climate Change, 3(9), 816-821.
  •  
  • 13. Howard, G., Bartram, J., Pedley, S., Schmoll, O., Chorus, I., and Berger, P., 2006, Groundwater and public health, In: Schmoll, O., Howard, G., Chilton, J., and Chorus, I. (eds), Protecting Groundwaterfor Health: Managing the Quality of Drinking-water Sources, IWA Publishing, London.
  •  
  • 14. IPCC (2022), “Climate Change 2022: Impacts, Adaptation, and Vulnerability”, Intergovernmental Panel on Climate Change.
  •  
  • 15. Jeon, W.H., Kim, D.H., Lee, S.H., Hwang, S., Moon, H.S., and Kim, Y. 2021. Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea. J. Soil Groundwater Environ., 26(6), 144-156.
  •  
  • 16. Kim, D.H., Kim, J.Y., Lee, J.Y., and Woo, N.C., 2023, “Study on groundwater–surface water interaction using hydrochemical tracers in a lagoon area of Gangwon Province, Korea”, J. Soil Groundwater Environ., 28(2), 1-11.
  •  
  • 17. Lee, H.S., Kim, J.Y., Kim, D.H., and Cho, K.H., 2023, “Abundance and diversity of microbial communities in the coastal aquifer of Songji Lagoon, Korea”, J. Soil Groundwater Environ., 28(5), 12-24.
  •  
  • 18. Lee, J.Y. and Kim, H.J., 2021, “Review and suggestions for sustainable development and conservation of groundwater under changing climate”, J. Geol. Soc. Korea, 57(6), 739-748.
  •  
  • 19. Li, X., Yan, B., Wang, Y., Wang, X., Li, Y., and Gai, J., 2022, “Study of the interaction between Yellow River water and groundwater in Henan Province, China”, Sustainability, 14(14), 8301.
  •  
  • 20. MacDonald, A.M., Bonsor, H.C., Dochartaigh, B.É.Ó., and Taylor, R.G., 2012, “Quantitative maps of groundwater resources in Africa”, Environ. Res. Lett., 7(2), 024009.
  •  
  • 21. Na, H.N., Koo, M.H., Cha, J.H., and Kim, Y.J., 2007, “Sensitivity analysis of groundwater model predictions associated with uncertainty of boundary conditions: a case study”, J. Soil Groundwater Environ., 12(3), 53-65.
  •  
  • 22. Reinecke, R., Foglia, L., Mehl, S., Herman, J.D., Wachholz, A., Trautmann, T., and Doll, P., 2019, Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body
  •  
  • 23. parameterization, Hydrol. Earth Syst. Sci., 23(11), 4561-4582.
  •  
  • 24. Rural Development Administration, 2025, “Soil Environment Information System (Heuktoram)”, Available at: http://soil.rda.go.kr [Accessed 25.01.24]
  •  
  • 25. Taylor, R. G., et al., 2013, “Ground water and climate change”, Nat. Clim. Change, 3(4), 322-329.
  •  
  • 26. Voeckler, H.M., Allen, D.M., and Alila, Y., 2014, “Modeling coupled surface water–groundwater processes in a small mountainous headwater catchment”, J. Hydrol., 517, 1089-1106.
  •  
  • 27. Vörösmarty, C.J., Green, P., Salisbury, J., and Lammers, R.B., 2000, “Global water resources: vulnerability from climate change and population growth”, Science, 289(5477), 284-288.
  •  
  • 28. Woessner, W.W., and E.P. Poeter. 2020. Hydrogeologic properties of earth materials and principles of groundwater flow. https://gw-project.org/books/hydrogeologic-properties-of-earth-materials-and-principles-of-groundwater-flow/[Accessed 25.10.27]
  •  
  • 29. Yum, J.G., Takemura, K., Yu, K.M., Nahm, W.H., Hong, S.S., Yang, D.Y., and Kim, J.Y., 2015, “Late Quaternary environmental changes of the Hwajinpo and Songjiho lagoons on the eastern coast of Korea¡±, in ¡°Earth Surface Processes and Environmental Changes in East Asia: Records from Lake-catchment Systems”, Springer Japan, Tokyo, 163-199.
  •  

This Article

  • 2025; 30(6): 96-108

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.096
  • Received on Nov 19, 2025
  • Revised on Dec 5, 2025
  • Accepted on Dec 19, 2025

Correspondence to

  • Jin Chul Joo 2, Hee Sun Moon 3
  • 2Department of Civil and Environmental Engineering, Hanbat National University
    3Groundwater Environment Research Center, Climate Change Response Research Division, Korea Institute of Geoscience and Mineral Resources

  • E-mail: jincjoo@hanbat.ac.kr, hmoon@kigam.re.kr