• Characterizing Baseflow Responses to Consecutive Events Using End-Member Mixing Analysis (EMMA)
  • Cho SungHyen1*, Kim Tae Seung1, Shin Woo Jin2, and Lee Ghwang-Sik2

  • 1National Instrumentation Center for Environmental Management (NICEM), Seoul National University, Seoul 08826, Korea
    2Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Korea

  • EMMA 기법을 이용한 연속 강우 시 기저유출의 변동 이해
  • 조성현1*ㆍ김태승1ㆍ신우진2ㆍ이광식2

  • 1서울대학교 농생명과학공동기기원, 2한국기초과학지원연구원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Barnes, B.S., 1939, The structure of discharge-recession curves, Trans, Am. Geophys. Union, 20, 721-725.
  •  
  • 2. Bottomley, D.J., Craig, D., and Johnston, L.M., 1984, Neutralization of acid runoff by groundwater discharge to streams in Canadian Precambrian Shield watersheds, Journal of Hydrology, 75, 1-26.
  •  
  • 3. Bottomley, D.J., Craig, D., and Johnston, L.M., 1986, Oxygen-18 studies of snowmelt runoff in a small Precambrian shield watershed: Implications for streamwater acidification in acid-sensitive terrain. Journal of Hydrology, 88(3-4), 213-234.
  •  
  • 4. Cho, S., Cho, M., Moon, S.-H., Kim, Y., and Lee, K.-S., 2008, Estimation of groundwater recharge in a district-scale area using 18O tracer, Journal of the Geological Society of Korea, 44(3), 331-340.
  •  
  • 5. Cho, S., Moon, S.-H., Lee, K.-S., and Kim, S.-C., 2003, Hydrograph separation using 18O tracer in a small catchment, Cheongdo, Journal of the Geological Society of Korea, 39(4), 509-518.
  •  
  • 6. Cho, S., Moon, S.-H. Kho, D.C., Cho, M., and Song, M.Y., 2005, Hydrograph Separation Using a Chemical Tracer(Cl) and Estimation of Baseflow Rate in Two Small Catchments, Yuseong, Daejeon. Journal of the Geological Society of Korea, 41(3), 427-436.
  •  
  • 7. Cho, S. and Moon S.H., 2022. A comparative study on the storm hydrograph separation methods for baseflow through field applications. J. Soil Groundwater Environ., 27, 50-59.
  •  
  • 8. Clark, I.D. and Fritz, P., 1997, Environmental isotopes in hydrogeology. CRD press LLC.
  •  
  • 9. Eshleman, K.N., Pollard, J.S., and O'brien, A.K., 1993, Determination of contributing areas for saturation overland flow from chemical hydrograph separations, Water Resources Research, 29(10), 3577-3587.
  •  
  • 10. Fetter, C.W., 1994, Applied hydrogeology, 3th Edition, Prentice-Hall, Inc. New Jersey, 691 p.
  •  
  • 11. Geologic Information Center, KIGAM., 2025, Multi-platform Geoscientific Information System (MGEO). from https://mgeo.kigam.re.kr/
  •  
  • 12. Gubareva, T.S., Gartsman, B. I., and Solopov, N.V., 2018, A model of mixing of four river runoff recharge sources using hydrochemical tracers in the problem of hydrograph separation, Water Resources, 45, 827-838.
  •  
  • 13. Hinton, M.J. and Schiff, S.L., 1994, Examining the contributions of glacial till water to storm runoff using two-and three-component hydrograph separations, Water Resources Research, 30(4), 983-993.
  •  
  • 14. Hooper, R.P. and Shoemaker, C.A., 1986, A comparison of chemical and isotopic hydrograph separation. Water Resources Research, 22(10), 1444-1454.
  •  
  • 15. Jung, H. and Lee, J., 2020, A review on quantitative estimation of baseflow and hydrograph separation using isotopes as a tracer, Journal of the Geological Society of Korea, 56(4), 501-514.
  •  
  • 16. Kendall, C., Sklash, M., and Bullen, Th. D., 1995, Isotope tracers of water and solute sources in catchments. Chapter 10. In: S.T. Trudgill(Ed.), Solute Modelling in Catchment Systems, Wiley, New-York.
  •  
  • 17. Kendall, C. and McDonnell, J.J., 2000, Isotope tracers in catchment hydrology. Elsevier Science B. V.
  •  
  • 18. Korea Meteorological Administration (KMA), 2025, Historical Weather Data. from https://data.kma.go.kr/
  •  
  • 19. Kwak, J., Kim, J., Jun, S.M., Hwang, S., Lee, S., Lee, J.N., Kang, M.S., 2020, Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN. Journal of the Korean Society of Agricultural Engineers, 62(6), 85-95.
  •  
  • 20. Lee, E.S. and Krothe, N.C., 2001. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers, Chemical Geology, 179, 129-143.
  •  
  • 21. Lee, J., 2017, A review on hydrograph separation using isotopic tracers, Journal of the Geological Society of Korea, 53(2), 339-346.
  •  
  • 22. Li, G., Chen, X., Gao, M., Zhang, Z., Soulsby, C., Tetzlaff, D., and Wang, Y., 2025, Stepwise tracer-based hydrograph separation to quantify contributions of multiple sources of streamflow in a large glacierized catchment over the Tibetan Plateau, Journal of Hydrology, 134083.
  •  
  • 23. Moore, R.D., 1989, Tracing runoff sources with deuterium and oxygen-18 during spring melt in a headwater catchment, Southern Laurentians, Quebec, Journal of Hydrology, 112, 135-148.
  •  
  • 24. Obradovic, M.M. and Sklash, M.J., 1986, An isotopic and geochemical study of snowmelt runoff in a small Arctic watershed, Hydrologic Processes,1(1), 15-30.
  •  
  • 25. Ogunkoya, O.O. and Jenkins, A., 1993, Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model, Journal of Hydrology, 142, 71-88.
  •  
  • 26. Pearce, A.J., Stewart, M.K., and Sklash, M.G., 1986, Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resource Research, 22, 1263-1272.
  •  
  • 27. Roy, N., Sen, I.S., Boral, S., Shukla, T., and Velu, V., 2024, Isotope hydrograph separation reveals rainfall on the glaciers will enhance ice meltwater discharge to the Himalayan rivers, Water Resources Research, 60(6), e2023WR034528.
  •  
  • 28. Sklash, M.G. and Farvolden, R.N., 1979, The role of groundwater in storm runoff. Journal of Hydrology, 43, 45-65.
  •  
  • 29. Sklash, M.G., Stewart, M.K., and Pearce, A.J., 1986, Storm runoff generation in humid headwater catchments, 2. A case study of hillslope and low-order stream response, Water Resources Research, 22, 1273-1282.
  •  
  • 30. Sophocleous, M., 2002, Inteaction between groundwater and surface water: the state of the science, Hydrogeology Journal, 10, 52-67.
  •  
  • 31. Szeles, B., Holko, L., Parajka, J., Stumpp, C., Stockinger, M., Komma, J., Gönna, M.V.D., Vito, D., Uniyal, A., Hogan, p., and Blöschl, G., 2024, Comparison of two isotopic hydrograph separation methods in the Hydrological Open Air Laboratory, Austria. Hydrological Processes, 38(7), e15222.
  •  
  • 32. Wels, C., Cornett, J., and LaZerte, B., 1991, Hydrograph separation: A comparsion of geochemical and isotopic tracers. Journal of Hydrology, 122, 253-274.
  •  
  • 33. Xing, M., Liu, W., Hu, J., and Wang, Z., 2023, A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: a case study for Xi'an, China. Atmospheric Chemistry and Physics, 23(16), 9123-9136.
  •  

This Article

  • 2025; 30(6): 131-138

    Published on Dec 31, 2025

  • 10.7857/JSGE.2025.30.6.131
  • Received on Dec 11, 2025
  • Revised on Dec 24, 2025
  • Accepted on Dec 31, 2025

Correspondence to

  • Cho SungHyen
  • National Instrumentation Center for Environmental Management (NICEM), Seoul National University, Seoul 08826, Korea

  • E-mail: sunghc@snu.ac.kr