• Comparative Assessment of Quantitative Methods determining the Amount of Calcium Carbonate Minerals derived from Biocalcification
  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Cheon, Seung-Kyu;Kim, Chang-Gyun;
  • Department of Environmental Engineering, Inha University;SUDOKWON Landfill Site management corporation;SUDOKWON Landfill Site management corporation;SUDOKWON Landfill Site management corporation;Department of Environmental Engineering, Inha University;
  • 생물학적 칼슘화에 의해 생성된 CaCO3 광물의 정량분석 방법 비교 평가
  • 안창민;배영신;함종헌;천승규;김창균;
  • 인하대학교 환경공학과;수도권매립지관리공사 녹색기술연구센터;수도권매립지관리공사 녹색기술연구센터;수도권매립지관리공사 녹색기술연구센터;인하대학교 환경공학과;
References
  • 1. Achal, V. and Pan, X., 2010, Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation, Curr. Microbiol., 62(3), 894-902.
  •  
  • 2. Al-Thawadi, S.M., 2011, Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand, J. Adv. Sci. Eng. Res., 1(1), 98-114.
  •  
  • 3. Bundeleva, I.A., Shirokova, L.S., Benezeth, P., Pokrovsky, O. S., Kompantseva, E.I., and Balor, S., 2012, Calcium carbonate precipitation by anoxygenic phototrophic bacteria Chem. Geol. 291, 116-131.
  •  
  • 4. Burbank, M.B., Weaver, T.J., Green, T.L., Williams, B.C., and Crawford, R.L., 2011, Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils, Geomicrobiol. J., 28, 301-312.
  •  
  • 5. Clesceri, L.S., Greenberg, A.E., and Eaton, A.D., 1998, Standard Methods for the Examination of Water and Wastewater. 20 ed., American Public Health Association: Washington D.C., 2-37 p.
  •  
  • 6. Dupraz, C., Pamela, R.R., Braissant, O., Decho, A.W., Norman, S.R., and Visscher, P.T., 2008, Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev., 96(3), 141-162.
  •  
  • 7. Hammes, F. and Verstraete, W., 2002, Key roles of pH and calcium metabolism in microbial carbonate precipitation, Rev. Environ. Sci. Biotechnol., 1, 3-7.
  •  
  • 8. Jahns, T., 1999, Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pateurii, J. Bacteriol., 178(2), 403-409.
  •  
  • 9. Lamas F., Irigaray C., Oteo C., and Chacon J., 2005, Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls, Eng. Geol., 81, 32-41.
  •  
  • 10. Mitchell, A.C., Dideriksen, K., Spangler, L.H., Cunningham, A.B., and Gerlach, R., 2010, Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping, Environ. Sci. Technol., 44(13), 5270-5276.
  •  
  • 11. Morgan, D.J., 1977, Simultaneous DTA-EGA of minerals and natural mixtures, J. Therm. Anal., 12, 245-263.
  •  
  • 12. Peters, F., Schwarz, K., and Epple, M., 2000, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochim. Acta., 361, 131-138.
  •  
  • 13. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E., 1996, Methods of Soil Analysis part 3 - chemical methods, Soil Science Society of America, Inc., Madison, Wisconsin, USA, 451-455 p.
  •  
  • 14. Stocks-Fischer, S., Galinat, J.K., and Bang, S.S., 1999, Microbiological precipitation of $CaCO_3$, Soil Biol. Biochem., 31(11), 1563-1571.
  •  

This Article

  • 2013; 18(5): 1-6

    Published on Oct 31, 2013

  • 10.7857/JSGE.2013.18.5.001
  • Received on Feb 6, 2013
  • Revised on Aug 20, 2013
  • Accepted on Sep 4, 2013

Correspondence to

  • E-mail: