• The Modified Eulerian-Lagrangian Formulation for Cauchy Boundary Condition Under Dispersion Dominated Flow Regimes: A Novel Numerical Approach and its Implication on Radioactive Nuclide Migration or Solute Transport in the Subsurface Environment
  • Sruthi, K.V.;Suk, Heejun;Lakshmanan, Elango;Chae, Byung-Gon;Kim, Hyun-su;
  • Groundwater Department, Korea Institute of Geoscience and Mineral Resources;Groundwater Department, Korea Institute of Geoscience and Mineral Resources;Department of Geology, Anna University;Groundwater Department, Korea Institute of Geoscience and Mineral Resources;Department of Earth and Environmental Sciences, Chonbuk National University;
References
  • 1. Barry, D.A., 1992, Modelling contaminant transport in the subsurface: theory and computer programs, In: Ghadiri, H., Rose, C. W (eds.), Modelling chemical transport in soil: natural and applied contaminants, Lewis Publishers, Boca Raton, Florida, p. 105-144.
  •  
  • 2. Bergvall, M., Grip, H., Sjostrom, J., and Laudon, H., 2011, Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer, Hydrol. Earth Syst. Sci., 15, 2229-2244.
  •  
  • 3. Bianchi, M., Liu, H.H., and Birkholzer, J., 2014, Radionuclide Transport Behavior in a Generic Geological Radioactive Waste Repository, Groundwater., 1-12.
  •  
  • 4. Birdsell, K.H., Wolfsberg, A.V., Hollis, D., Cherry, T.A., and Bower, K.M., 2000, Groundwater Flow and Radionuclide Transport Calculations for a Performance Assessment of a Low-Level Waste Site, J. Contam. Hydrol., 46, 99-129.
  •  
  • 5. Bradbury, M.H. and Green, A., 1985, Measurement of important parameters determining aqueous phase diffusion rates through crystalline rock matrices, J. Hydrol., 82, 39-55.
  •  
  • 6. Chen, D.W, Carsel, R.F., Moeti, L., and Vona, B., 1999, Assessment and prediction of contaminant transport and migration at a Florida superfund site, Environ. Monit. Assess., 57, 291-299.
  •  
  • 7. Cho, J.H. and Jaffe, P.R., 1990, The volatilization of organic compounds in unsaturated porous media during infiltration, J. Contam. Hydrol., 6, 387-410.
  •  
  • 8. Cooley, R.L., 1971, A finite difference method for unsteady flow in variably saturated porous media: application to a single pumping well, Water. Resour. Res., 7, 1607-1625.
  •  
  • 9. Delage, P., Cui, Y.J., and Tang, A.M., 2010, Clays in radioactive waste disposal, J. Rock Mech. Geotech. Eng., 2, 111-123.
  •  
  • 10. Diersch, H.J.G., 1997, Interactive, graphics-based finite element simulation system FEFLOW for modeling groundwater flow, contaminant mass and heat transport processes, FEFLOW User’s Manual Version 4.7, August 1997, WASY Institute for Water Resources Planning and Systems Research, Berlin.
  •  
  • 11. Diersch, H.J.G., 2013, Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer, New York.
  •  
  • 12. Douglass, J. Jr. and Russell, T.F., 1982, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885.
  •  
  • 13. Eddebbarh, A.A., Zyvoloski, G.A., Robinson, B.A., Kwicklis, E.M., Arnold, B., Corbet, T., Kuzio, S., and Faunt, C., 2003, The saturated zone at Yucca Mountain: an overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration, J. Contam. Hyd., 62-63, 477-493.
  •  
  • 14. Freeze, R.A., 1971a, Three dimensional transient, saturated-unsaturated flow in a groundwater basin, Water. Resour. Res., 7, 347-366.
  •  
  • 15. Freeze, R.A., 1971b, Influence of the unsaturated flow domain on seepage through earth dams, Water. Resour. Res., 7, 929-941.
  •  
  • 16. Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey.
  •  
  • 17. Herr, M., Schafer, G., and Spitz, K., 1989, Experiments studies of mass transport in porous media with local heterogeneities, J. Contam. Hydrol., 4, 127-137.
  •  
  • 18. Imhoff, P.T. and Jaffe, P.R., 1994, Effect of Liquid Distribution on Gas-water phase mass transfer in unsaturated sand during infiltration, J. Contam. Hydrol., 16, 359-380.
  •  
  • 19. Jacques, D., Simu nek, J., Mallants, D., and van Genuchten, M.Th., 2008, Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil, Geoderma., 145, 449-461.
  •  
  • 20. Kipp, K.L., 1987, HST3D: a computer code for simulation of heat and solute transport in three dimensional groundwater flow systems. US Geological Survey, WRIR report, Denver, Colorado, USA, p. 86-4095.
  •  
  • 21. Koch, J. and Nowak, W.A., 2014, Method for implementing Dirichlet and third-type boundary conditions in PTRW simulations, Water Resour. Res., 50, 1374-1395.
  •  
  • 22. Konikow, L.F., Reilly, T.E., Barlow, P.M., and Voss, C.I., 2007, Chapter 23, Groundwater modeling, In: Delleur, J (ed.), The Handbook of Groundwater Engineering, CRC Press, Boca Raton, p. 54.
  •  
  • 23. Lynch, D. and O’Neill, K., 1980, Elastic grid deformation for moving boundary problems in two space dimensions, In: Wang, S.Y., Alonso, C.V., Brebbia, C.A., Gray, W.G., and Pinder, G.F. (eds.), Finite Elements in Water Resources, Oxford, Mississippi.
  •  
  • 24. National Research Council., 2005, Risk and decisions about disposition of transuranic and high-level radioactive waste, National Academy, Washington, DC.
  •  
  • 25. Neuman, S.P., 1981, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate spacetime grids, J. Comput. Phys., 41, 270-294.
  •  
  • 26. Neuman, S.P. and Sorek, S., 1982, Eulerian-Lagrangian methods for advection-dispersion, In: Holz, K.P. et al. (eds.), Finite Elements in Water Resources, Springer, Newyork.
  •  
  • 27. Neuman, S.P., 1984, Adaptive Eulerian-Lagrangian finite element method for advection-dispersion, Int. J. Numer. Meth. Eng., 20, 321-337.
  •  
  • 28. Neuman, S.P., 1993, Eulerian-Lagrangian theory of transport in space-time nonstationary velocity fields; exact formalism by conditional moments and weak approximation, Water. Resour. Res., 19, 633-645.
  •  
  • 29. O’Neill, K., 1981, Highly efficient, oscillation free solution of the transport equation over long times and large space, Water. Resour. Res., 17, 1665-1675.
  •  
  • 30. Patera, E.S., Hobart, D.E., Meijer, A., and Rundberg, R.S., 1990, Chemical and physical processes of radionuclide migration at Yucca mountain, Nevada, J. Radioanal. Nucl. Chem., 142, 331-337.
  •  
  • 31. Pruess, K., 1991, TOUGH2: a general-purpose numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley Laboratory Report Series, LBL-29400, Berkeley, California, USA.
  •  
  • 32. Qian, T.W., Tang, H.X., Chen, J.J., Wang, J.S., Liu, C.L., and Wu, G.B., 2001, Simulation of the migration of 85Sr in Chinese loess under artificial rainfall condition, Radiochim. Acta., 89, 403.
  •  
  • 33. Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.H., and Attinger, S., 2011, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifer: a comparative study, Adv. Water Resour., 34(1), 47-61.
  •  
  • 34. Rutqvist, J., 2012, The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-51.
  •  
  • 35. Smith, P.A., Gautschi, A., Vomvoris, S., Zuidema, P., and Mazurek, M., 1997, The development of a safety assessment model of the geosphere for a repository sited in the crystalline basement of northern Switzerland, J. Contam. Hydrol., 26, 309-324.
  •  
  • 36. Sorek, S., 1988, Eulerian-Lagrangian method for solving transport in aquifers, Adv. Water Resour., 11, 67-73.
  •  
  • 37. Sorek, S. and Braester, C., 1988, Eulerian-Lagrangian Formulation of the Equations for Groundwater Denitrification Using Bacterial Activity, Adv. Water Resour., 11, 162-169.
  •  
  • 38. Suk, H., 2015, Modified mixed Lagrangian- Euleraian method based on numerical framework of MT3DMS on Cauchy boundary, Groundwater (under review).
  •  
  • 39. Van Genuchten, M.Th., and Wierenga, P.J., 1976, Mass transfer studies in sorbing porous media. I. Analytical solutions, Soil Sci. Soc. Am. J., 40, 473-481.
  •  
  • 40. Van Genuchten, M.T. and Alves, W.J., 1982, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletin, United States Department of Agriculture, p. 1661.
  •  
  • 41. Varoglu, E. and Finn, W.D.L., 1980, Finite elements incorporating characteristics for one-dimensional diffusion-convection equation, J. Comput. Phys., 34, 371-389.
  •  
  • 42. Yaouti, F., Mandour, A., Khattach, D., and Kaufmann, O., 2008, Modeling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco), J. Hydro-environ. Res., 2, 192-209.
  •  
  • 43. Yeh, G.T. and Chou, F.K., 1981, Moving boundary numerical surge model, J. Waterw. Port Coastal Ocean Div. Am. Soc. Civ. Eng., 107, 34-37.
  •  
  • 44. Yi, S., Ma, H., Zheng, C., Zhu, X., Wang, H., Li, X., Hu, X., and Qin, J., 2012, Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: A case study in southern China, Sci. Total Environ., 414, 624-631.
  •  
  • 45. Zhao, C. and Valliappan, S., 1994, Numerical modeling of transient contaminant migration problems in infinite porous fractured media using finite/infinite element technique, Part I: Theory, Int J .Numer. Anal. Met., 18, 523-541.
  •  
  • 46. Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z., 2013, The Finite Element Method its Basis and Fundamentals, 7th ed., Butterworth-Heinemann, Oxford.
  •  
  • 47. Zuo, R., Teng, Y., and Wang, J., 2009, Sorption and retardation of strontium in fine-particle media from a VLLW disposal site, J. Radioanal. Nucl. Chem., 279, 893-899.
  •  

This Article

  • 2015; 20(2): 10-21

    Published on Apr 30, 2015

  • 10.7857/JSGE.2015.20.2.010
  • Received on Mar 19, 2015
  • Revised on Apr 16, 2015
  • Accepted on Apr 16, 2015

Correspondence to

  • E-mail: