• Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution
  • Yu, Gihyeon;An, Jinsung;Jeong, Buyun;Nam, Kyoungphile;
  • Department of Civil & Environmental Engineering, Seoul National University;Department of Civil & Environmental Engineering, Seoul National University;Department of Civil & Environmental Engineering, Seoul National University;Department of Civil & Environmental Engineering, Seoul National University;
  • Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향
  • 유기현;안진성;정부윤;남경필;
  • 서울대학교 건설환경공학부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;
References
  • 1. Alloway, B.J., 1990, Heavy Metals in Soil: Trace Metals and Metalloids in Soils and their Bioavailability, 3rd ed, 22, Springer Netherlands, Environmental Pollution, Netherlands, 100-124 p.
  •  
  • 2. An, J., Jeong, S., Moon, H.S., Jho, E.H., and Nam, K., 2012, Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil, J. Hazard. Mater., 203-204, 69-76.
  •  
  • 3. An, J., Jho, E.H., and Nam, K., 2015, Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk, J. Hazard. Mater., 286, 236-241.
  •  
  • 4. Ardestani, M.M. and van Gestel, C.A.M., 2013, Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida, Environ. Pollut., 180, 122-130.
  •  
  • 5. Cances, B., Ponthieu, M., Castrec-Rouelle, M., Aubry, E., and Benedetti, M.F., 2003, Metal ions speciation in a soil and its solution: experimental data and model results, Geoderma, 113, 341-355.
  •  
  • 6. Chen, B.-C., Ho, P.-C., and Juang, K.-W., 2013, Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models, Ecotoxicology, 22, 174-183.
  •  
  • 7. Di toro, D.M., Allen, H.E., Bergman, H.L., Meyer, J.S., Paquin, P.R., and Santore, R.C., 2001, Biotic ligand model of the acute toxicity of metals. 1. Technical basis, Environ. Toxicol. Chem., 20, 2383-2396.
  •  
  • 8. Edmunds, W.M. and Bath, A.H., 1976, Centrifuge extraction and chemical analysis of interstitial waters, J. Environ. Sci. Technol., 10, 467-472.
  •  
  • 9. Ge, Y., MacDonald, D., Sauve, S., and Hendershot, W., 2005, Modeling of Cd and Pb speciation in soil solutions by WinHumiv V and NICA-Donnan model, Environ. Modell. Softw., 20, 353-359.
  •  
  • 10. Gustafsson, J.P., 2014, Visual MINTEQ, Ver 3.1, available from http://vminteq.lwr.kth.se/ (accessed December, 2016).
  •  
  • 11. Jho, E.H., An, J., and Nam, K., 2011, Extended biotic ligand model for predicting of mixture toxicity of Cd and Pb using single metal toxicity data, Environ. Toxicol. Chem., 30, 1697-1703.
  •  
  • 12. Kwon, E., Lee, H. A, Kim, D., Lee, J., Lee, S., and Yoon, H.-O., 2015, Geochemical investigation of fluoride migration in the soil affected by an accidental hydrofluoric acid leakage, J. Soil Groundw. Environ., 20, 65-73.
  •  
  • 13. Le, T.T.Y., Peijnenburg, W.J.G.M., Hendriks, A.J., and Vijver, M.G., 2012, Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model, Environ. Toxicol. Chem., 31, 355-359.
  •  
  • 14. Lock, K. and Janssen, C.R., 2003, Influence of aging on metal availability in soils, Rev. Environ. Contam. Toxicol., 178, 1-21.
  •  
  • 15. Luo, X.-S., Li, L.-Z., and Zhou, D.-M., 2008, Effect of cations on copper toxicity to wheat root: Implications for the biotic ligand model, Chemosphere, 73, 401-406.
  •  
  • 16. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D., and Tiller, K.G., 1997, Cadmium sorption and transport in variable charge soils: a review, J. Environ. Qual., 26, 602-617.
  •  
  • 17. Nakanishi, H., Shoji, R., Itouga, M., and Sakakibara, H., 2010, Application and comparison of tow biotic ligand models predicting copper toxicity and accumulation in heavy metal tolerant moss, J. Water Environ. Technol., 8, 339-345.
  •  
  • 18. NIER, 2014, Regulation of specific method for risk assessment of chemicals, National Institute of Environmental Research, Seogu, Incheon, Republic of Korea, NIER notification 2014-48.
  •  
  • 19. Peijnenburg, W.J.G.M. and Jager, T., 2003, Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues, Ecotoxicol. Environ. Saf., 56, 63-77.
  •  
  • 20. Santore, R.C., Di toro, D.M., Paquin, P.R., Allen, H.E., Meyer, J.S., 2001, Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia, Environ. Toxicol. Chem., 20, 2397-2402.
  •  
  • 21. Sauve, S., Norvell, W.A., Mcbride, M., and Hendershot, W., 2000, Speciation and complexation of cadmium in extracted soil solutions, Environ. Sci. Technol., 34, 291-296.
  •  
  • 22. Steenbergen, N.T.T.M., Iaccino, F., Winkel, M., Reijnders, L., and Peijnenburg, W.J.G.M., 2005, Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa, Environ. Sci. Technol., 39, 5694-5702.
  •  
  • 23. Thakali, S., Allen, H.E., Di Toro, D.M., Ponizovsky, A.A., Rodney, C.P., Zhao, F.J., and McGrath, S.P., 2006a, A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils, Environ. Sci. Technol., 40, 7085-7093.
  •  
  • 24. Thakali, S., Allen, H.E., Di Toro, D.M., Ponizovsky, A.A., Rodney, C.P., Zhao, F.J., McGrath, S.P., Criel, P., Eeckout, H.V., Janssen, C.R., Oorts, K., and Smolders, E., 2006b, Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil, Environ. Sci. Technol., 40, 7094-7100.
  •  
  • 25. Vig, K., Megharaj, M., Sethunathan, N., and Naidu, R., 2003, Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review, Adv. Environ. Res., 8, 121-135.
  •  
  • 26. Van Vlaardingen, P.L.A., Traas, T.P., Wintersen, A.M., and Aldenberg, T., 2004, ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
  •  
  • 27. Wheeler, J.R., Grist, E.P.M., Leung, K.M.Y., Morritt, D., and Crane, M., 2002, Species sensitivity distributions: data and model choice, Marine Pollution Bulletin, 45, 192-202.
  •  

This Article

Correspondence to

  • E-mail: