• Evaluation of Fluoride Distribution, Fate and Transport Characteristics in Soils
  • Lim, Ga-Hee;Lee, Hong-Gil;Kim, Hyoung-Seop;Noh, Hoe-Jung;Ko, Hyoung-Wook;Kim, Ji-In;Jo, Hun-Je;Kim, Hyun-Koo;
  • Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;Soil and Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research;
  • 토양 중 불소 분포 및 거동 특성 평가
  • 임가희;이홍길;김형섭;노회정;고형욱;김지인;조훈제;김현구;
  • 국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;국립환경과학원 환경기반연구부 토양지하수연구과;
References
  • 1. Adriano, D.C. and Doner, H.E., 1982, Bromine, chlorine, and fluoride. In: A.L. Page, R.H. Miller and D.R. Keeney(eds.), Methods of Soil Analysis, Part II: Chemical and microbiological properties, American Society of Agronomy, Madison, WI, p. 449-483.
  •  
  • 2. Alvarez-Ayuso, E., Gimenez, A., and Ballesteros, J.C., 2011, Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum, J Hazard Mater., 192(3), 1659-1666.
  •  
  • 3. Apambire, W.B., Boyle, D.R., and Michel, F.A., 1997, Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana, Environ. Geol., 33, 13-24.
  •  
  • 4. Borah, J. and Saikia, D., 2011, Estimation of the concentration of Fluoride in the ground water of Tinsukia Town master plan area of the Tinsukia district, Assam, India, Scholars Res. Libr. 3(2), 202-206.
  •  
  • 5. Burt, R., Wilson, M.A., Mays, M.D., and Lee, C.W., 2003, Major and trace elements of selected pedons in the USA, J. Environ. Qual., 32, 2109-2121.
  •  
  • 6. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K., and Koh, Y.K., 2007, Fluorine geochemistry in bedrock groundwater of South Korea, Sci. Tot. Environ,. 385, 272-283.
  •  
  • 7. Chavoshi, E., Afyuni, M., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., Abbaspour, K.C., Shariatmadari, H., and Mirghafari, N., 2011, Health risk asssessment of fluoride exposure in soil, plants, and water at Isfahan, Iran, Human Ecol. Risk Assess., 17, 414-430.
  •  
  • 8. Choi, D.K., 2013, Tectonic provinces of the Korean Peninsula, Proceedings of the Annual Conference of the Geological Society of Korea, Geol. Soc. Kor., Jeju, Korea, p. 22-22.
  •  
  • 9. Cronin, S.J., Manoharan, V., Hedley, M.J., and Lognathan, P., 2000, Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture system in New Zealand, N.Z. J. Agric. Res., 43, 295-321.
  •  
  • 10. Davison, A.W., 1983, Uptake, translocation and accumulation of soil and airborne fluorides by vegetation, In: J.L. Shupe, H.B. Peterson, and N.C. Leone(eds), Fluorides: effects on vegetation, animals and humans, Paragon Press, UT, USA, p. 62-82.
  •  
  • 11. Death, C., Coulson, G., Kierdorf, U., Kierdorf, H., Morris, W.K., and Hufschmid, J., 2015, Dental fluorosis and skeletal fluoride content as biomarkers of excess fluoride exposure in marsupials, Sci. Tot. Environ., 533, 528-541.
  •  
  • 12. Edmunds, W.M. and Smedley, P.L., 2013, Fluoride in natural waters, In: O. Selinus, B. Alloway, J.A. Centeno, R.B. Finkelman, R. Fuge, U. Lindh, and P.L. Smedley(eds.), Essentials of medical geology. Elsevier Academic Press, London, UK, p. 311-336.
  •  
  • 13. Erdal, S. and Buchanan, S.N., 2005, A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach, Environ. Health Perspect., 113, 111-117.
  •  
  • 14. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., and Magara, Y., 2006, Fluoride in drinking water, IWA Publishing, London, 144 p.
  •  
  • 15. Fomon, S.J., Ekstrand, S.J., and Ziegler, E.E., 2000, Fluoride intake and prevalence of dental fluorosis: trends in fluoride intake with special attention to infants, J. Public Health Dent., 60, 131-139.
  •  
  • 16. Frencken, J., 1992, Endemic fluorosis in developing countries: causes, effects and possible solution, TNO Institute for Preventive Health Care, The Netherlands, p.2-3.
  •  
  • 17. Fuge, R. and Andrews, M.J., 1988, Fluorine in the UK environment, Environ. Geochem. Health, 10, 96-104.
  •  
  • 18. Fung, K.F., Zhang, Z.Q., Wong, J.W.C., and Wong, M.H., 1999, Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion, Environ. Pollut., 104, 197-205.
  •  
  • 19. Gago, C., Romar, A., Fernandez-Marcos, M.L., and Alvarez, E., 2014, Fluoride sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain), Environ. Earth Sci., 72(10), 4105-4114.
  •  
  • 20. Gao, H.J., Zhang, Z.Z., and Wan, X.C., 2012, Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants, Environ. Geochem. Health, 34(5), 551-562.
  •  
  • 21. Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Hu, Y.K., and Zhao, Z.D., 1998, Chemical composition of the continental crust as revealed by studies in east China, Geochim. Cosmochim. Acta, 62, 1959-1975.
  •  
  • 22. Groenenberg, J.E., Romkens, P.F.A.M., Comans, R.N.J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., and De Vries, W., 2010, Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data, Eur. J. Soil Sci., 61, 58-73.
  •  
  • 23. Haidouti, C., 1991, Fluoride distribution in soils in the vicinity of a point emission source in Greece, Geoderma, 49, 129-138.
  •  
  • 24. Handa, B.K., 1975, Geochemistry and genesis of fluoride-containing ground waters in India, Groundwater, 13, 275-281.
  •  
  • 25. Hedrick, J.B., 1995, The global rare-earth cycle, J. Alloys Compds., 225, 609-618.
  •  
  • 26. Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3rd edition, US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville, 263 p.
  •  
  • 27. Jacks, G., Bhattacharya, P., Chaudhary, V., and Singh, K.P., 2005, Controls on the genesis of some high-fluoride groundwaters in India, Appl. Geochem., 20, 221-228.
  •  
  • 28. Kabata-Pendias, A., 2010, Trace elements in soils and plants, CRC Press, Boca Raton, FL.
  •  
  • 29. Kabata-Pendias, A., and Pendias, H., 1984, Trace elements in soils and plants, CRC Press, Roca Raton, FL, USA.
  •  
  • 30. Kim, K.H., Yun, S.T., Chae, G.T., Kim, S.Y., Kwon, J.S., and Koh, Y.K., 2006, Hydrogeochemical evolution related to high fluoride concentrations in deep bedrock groundwaters, Korea, Econ. Environ. Geol., 39(1), 27-38.
  •  
  • 31. Korea Institute of Geoscience and Mineral Resources, 2016, Multiplatform GEOscience Information System (MEGO).
  •  
  • 32. Kowalski, F., 1999, Fluoridation, J. AWWA, 91, 4.
  •  
  • 33. Lahermo, P., Sandstrom, H., and Malisa, E., 1991, The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications, J. Geochem. Explor., 41(1), 65-79.
  •  
  • 34. Lim, G.H., Kim, K.H., Seo, B.H., and Kim, K.R., 2014, Transfer function for phytoavailable heavy metals in contaminated agricultural soils: the case of the Korean agricultural soils affected by the abandoned mining sites, Kor. J. Environ. Agric., 33(4), 271-281.
  •  
  • 35. Loganathan, P., Gray, C.W., Hedley, M.J., and Roberts, A.H.C., 2006, Total and soluble fluorine concentrations in relation to properties of soils in New Zealand, Eur. J. Soil Sci., 57(3), 411-421.
  •  
  • 36. Malago, J., Makoba, E., and Muzuka, A.N.N., 2017, Fluoride levels in surface and groundwater in Africa: a review, Am. J. Water Sci. Eng., 3(1), 1-17.
  •  
  • 37. Minasny, B., McBratney, A.B., Brough, D.M., and Jacquier, D., 2011, Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration, Eur. J. Soil Sci., 62, 728-732.
  •  
  • 38. Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A., and Usmani, T.H., 2010, Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan, Chemosphere, 78(11), 1313-1321.
  •  
  • 39. National Research Council (NRC), 2006, Fluoride in drinking water: a scientific review of EPA's standards, National Academies Press, Washington DC, p. 530.
  •  
  • 40. Ozsvath, D.L., 2009, Fluoride and environmental health: a review, Rev. Environ. Sci. Biotechnol., 8, 59-79.
  •  
  • 41. Peckham, S., Lowery, D., and Spencer, S., 2015, Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water, J. Epidemiol. Commun. Health, 69, 619-624.
  •  
  • 42. Pickering, W.F., 1985, The mobility of soluble fluoride in soils, Environ. Pollut. Ser. B Chem. Phys., 9, 281-308.
  •  
  • 43. Polomski, J., Fluhler, H., and Blaser, P., 1982, Accumulation of air-borne fluoride in soils, J. Environ. Qual., 11, 457-461.
  •  
  • 44. Poovaiah, B.W., 1988, Calcium and senescence, In: L. Nooden, and A.C. Leopold(eds), Senescence and aging in plants, Academic Press, NY, USA.
  •  
  • 45. Rodriguez, C.G., Rodriguez, E.A., and Marcos, M.L.F., 2001, Comparison of methods for fluoride extraction from forest and cropped soils in vicinity of and aluminum smelter in galicia (NW Spain), Commun. Soil Sci. Plant Analysis, 32(15-16), 2503-2517.
  •  
  • 46. Roorda van Eysinga, J.P.N.L., 1974, The uptake of fluoride by the root and its effect on various crops, particularly freesias, Agic. Res. Report, 831
  •  
  • 47. Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust, In: R.L. Rudnick(ed.), The Crust, Treatise on Geochemistry vol. 3, p. 1-64.
  •  
  • 48. Saxena, V.S., and Ahmed, S., 2003, Inferring the chemical parameters for the dissolution of fluoride in groundwater, Environ. Geol., 43, 731-736.
  •  
  • 49. Senkondo, Y.H., 2017, Immobilization of fluoride in soils through soil properties - a review, J. Exp. Agric. Int., 19(1), 1-8.
  •  
  • 50. Shacklette, H.T., and Boerngen, J.G., 1984, Element concentrations in soils and other surficial materials of the conterminous United States, Professional Paper 1270, U.S. Geological Survey, U.S. Government Printing Office, Washington DC, pp. 105.
  •  
  • 51. Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E., and Campbell, F.E., 1967, An estimate of the chemical composition of the Canadian Precanbrian shield, Can. J. Earth Sci., 4, 829-853.
  •  
  • 52. Shaw, D.M., Dostal, J., and Keays, R.R., 1976, Additional estimates of continental surface Precambrian shield composition in Canada, Geochim. Cosmochim. Acta, 40, 73-83.
  •  
  • 53. Skjelkvale, B.L., 1994, Factors influencing fluoride concentrations in Norwegian lakes, Water Air Soil Pollut., 77, 151-167.
  •  
  • 54. Sun, Z., Wu, L., Wang, X., and Liu, S., 2000, Effect if high-fluoride water on intelligence in children, Fluoride, 33, 74-78.
  •  
  • 55. Tessier, A., Campbell, P.G., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Analyt. Chem., 51(7), 844-851.
  •  
  • 56. Totsche, K.U., Wilcke, W., Krber, M., Kobza, J., and Zech, W., 2000, Evaluation of fluoride-induced metal mobilization in soil columns, J. Environ. Qual., 29(2), 454-459.
  •  
  • 57. Tyurin, I.V., 1931, A new modification of the volumetric method of determining soil organic matter by means of chromic acid, Pochvovedenie, 26, 36-47.
  •  
  • 58. USEPA, 1986, Method 9080: Cation-exchange capacity of soils (ammonium acetate), National Technical Information Service, VA, USA.
  •  
  • 59. Vinogradov, A.P., 1954, Geochemie seltener und nur in Spuren vorhandener chemischer elemente in Boden, Academie-Vertag, Berilin, Germany.
  •  
  • 60. Vithanage, M., and Bhattacharya, P., 2015, Fluoride in the environment: sources, distribution and defluoridation, Environ. Chem. Lett., 13(2), 131-147.
  •  
  • 61. Wang, Y. and Wei, F.S., 1995, Chemistry of elements in the pedosphere environment, China Environmental Science Press, Beijing, China, p. 129-144.
  •  
  • 62. Ware, G.W., 1975, Pesticides: an auto-tutorial approach, W.H, Freeman and Co Ltd, SF, USA.
  •  
  • 63. Wedepohl, H., 1995, The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 1217-1239.
  •  
  • 64. Weinstein, L.H., and Davison, A.W., 2004, Fluorides in the environment: effects on plants and animals, 1st edition, CABI Publishing, Walingford, Oxford, UK.
  •  
  • 65. Xu, L., Lou, K. Feng, F., and Tan, J., 2006, Studies on the chemical mobility of fluorine in rocks, Research Report Fluoride, 39(2), 145-151.
  •  
  • 66. Yadav, N., Rani, K., Yadav, S.S., Yadav, D.K., Yadav, V.K., and Yadav, N., 2018, Soil and water pollution with fluoride, geochemistry, food safety issues and reclamation - a review, Int. J. Curr. Microbiol. App. Sci., 7(5), 1147-1162.
  •  
  • 67. Zhou, Q., and Sun, T., 2002, Effects of chromium(VI) on extractability and plant uptake of fluorine in agricultural soils of Zhejiang province, China, Water Air Soil Pollut., 133(1), 145-160.
  •  

This Article

Correspondence to

  • E-mail: