• Microbial Amelioration of Acid Mine Drainage Impaired Soil using the Bacterial Consortia of Klebsiella sp. and Raoultella sp.
  • Seon Yeong Park1·Gi Won Lee2·Chang Gyun Kim1,2,*

  • 1Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Korea
    2Department of Environmental Engineering, INHA University, Incheon 22212, Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahn, C.M. and Kim, C.G., 2015, Assessments of CO2 biomineralization and its kinetics using indigenous microorganisms derived from landfill cover soil, Desalin. Water Treat., 54, 3632-3638.
  •  
  • 2. Alice, B., Melo, G. De, Motta, F.L., Helena, M., and Santana, A., 2016, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng. C, 62, 967-974.
  •  
  • 3. Asta, M.P., Ayora, C., Acero, P., and Cama, J., 2010, Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain), J. Hazard. Mater., 177, 1102-1111.
  •  
  • 4. Barboza, N.R., Cordeiro, M.M., Santos, P.A., Queiroz, P.S., Leão, V.A., and Guerra-Sá, R., 2018, A new application for klebsiella oxytoca in bioremediation: treatment of manganese-laden wastewaters, Water. Air. Soil Pollut., 229, 19-26.
  •  
  • 5. Boopathy, R., Gurgas, M., Ullian, J., and Manning, J.F., 1998, Metabolism of explosive compounds by sulfate-reducing bacteria, Curr. Microbiol., 37, 127-131.
  •  
  • 6. Chemeda, Y.C., Deneele, D., and Ouvarard, G., 2018, Short-term lime solution-kaolinite interfacial chemistry and its effect on long-term pozzolanic activity, Appl. Clay Sci., 161, 419-426.
  •  
  • 7. Costa, M.C. and Duarte, J.C., 2005, Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor, Water. Air. Soil Pollut., 165, 325-345.
  •  
  • 8. Fávere, V.T., Laus, R., Laranjeira, M.C.M., Martins, A.O., and Pedrosa, R.C., 2004, Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters, Environ. Technol., 25, 861-866.
  •  
  • 9. Freeman, C. and Lock, M.A., 1992, Recalcitrant high-molecular-weight material, an inhibitor of microbial metabolism in river biofilms, Appl. Environ. Microbiol., 58, 2030-2033.
  •  
  • 10. Goulding, K.W.T., 2016, Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom, Soil Use Manag., 32, 390-399.
  •  
  • 11. Gupta, A. and Sar, P., 2020, Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 55, 464-482.
  •  
  • 12. Haynes, R.J. and Mokolobate, M.S., 2001, Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved, Nutr. Cycl. Agroecosystems, 59, 47-63.
  •  
  • 13. Huang, Y.L., Yang, S., Long, G.X., Zhao, Z.K., Li, X.F., and Gu, M.H., 2016, Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China, PLoS One, 11, 1-18.
  •  
  • 14. Hubert, C. and Voordouw, G., 2007, Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors, Appl. Environ. Microbiol., 73, 2644-2652.
  •  
  • 15. Kefeni, K.K., Msagati, T.A.M., and Mamba, B.B., 2017, Acid mine drainage: Prevention, treatment options, and resource recovery: A review, J. Clean. Prod., 151, 475-493.
  •  
  • 16. Lee, S.J., Park, J.H., Ahn, Y.T., and Chung, J.W., 2015, Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions, Water. Air. Soil Pollut., 226, 8-16.
  •  
  • 17. Leiva, E., Leiva-Aravena, E., and Vargas, I., 2016, Acid water neutralization using microbial fuel cells: an alternative for acid mine drainage treatment, Water, 8, 536-544.
  •  
  • 18. Liu, Z., Li, L., Li, Z., and Tian, X., 2018, Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor, Environ. Technol. (United Kingdom), 39, 1814-1822.
  •  
  • 19. Luptakova, A., Ubaldini, S., MacIngova, E., Fornari, P., and Giuliano, V., 2012, Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage, Process Biochem., 47, 1633-1639.
  •  
  • 20. Ma, J.F. and Furukawa, J., 2003, Recent progress in the research of external Al detoxification in higher plants: a minireview, J. Inorg. Biochem., 97, 46-51.
  •  
  • 21. Marschner, P., Kandeler, E., and Marschner, B., 2003, Structure and function of the soil microbial community in a long-term fertilizer experiment, Soil Biol. Biochem., 35, 453-461.
  •  
  • 22. Nancharaiah, Y.V., Mohan, T.V.K., Sai, P.M.S., and Venugopalan, V.P., 2017, Denitrification of high strength nitrate bearing acidic waters in granular sludge sequencing batch reactors, Inthernational Biodeterior. Biodegrad., 119, 29-36.
  •  
  • 23. Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R., and Lobo-Recio, M.Á., 2018, Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: isotherm and continuous-flow studies, J. Environ. Chem. Eng., 7, 102787-102796.
  •  
  • 24. OECD (Organisation for Economic Co-operation and Development), 1984, Guidelines for testing of chemicals No. 207. Earthworm, acute toxicity test, OECD, Paris.
  •  
  • 25. Ogbughalu, O.T., Gerson, A.R., Qian, G., Smart, R.S.C., Schumann, R.C., Kawashima, N., Fan, R., Li, J., and Short, M.D., 2017, Heterotrophic microbial stimulation through biosolids addition for enhanced acid mine drainage control, Minerals, 7, 105-116.
  •  
  • 26. Okai, M., Suwa, C., Nagaoka, S., Obara, N., Mitsuya, D., Kurihara, A., Ishida, M., and Urano, N., 2017, Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads, Biosci. Biotechnol. Biochem., 81, 2216-2224.
  •  
  • 27. Olds, W.E., Tsang, D.C.W., Weber, P.A., and Weisener, C.G., 2013, Nickel and Zinc removal from acid mine drainage: roles of sludge surface area and neutralising agents, J. Min., 2013, 1-5.
  •  
  • 28. Park, E.H., Mahanty, B., Yoon, S.U., and Kim, C.G., 2016, Biomimetic acid soil amelioration using indigenous soil isolates in comparison to other potential microorganism, Commun. Soil Sci. Plant Anal., 47, 1296-1305.
  •  
  • 29. Qi, Y., Zhu, J., Fu, Q., Hu, H., and Huang, Q., 2017, Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals, J. Environ. Manage., 200, 304-311.
  •  
  • 30. Qin, J., Cui, X., Yan, H., Lu, W., and Lin, C., 2019, Active treatment of acidic mine water to minimize environmental impacts in a densely populated downstream area, J. Clean. Prod., 210, 309-316.
  •  
  • 31. Qiu, R., Zhao, B., Liu, J., Huang, X., Li, Q., Brewer, E., Wang, S., and Shi, N., 2009, Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area, J. Hazard. Mater., 164, 1310-1315.
  •  
  • 32. Rehr, B. and Klemme, J.H., 1989, Formate dependent nitrate and nitrite reduction to ammonia by Citrobacter freundii and competition with denitrifying bacteria, Antonie Van Leeuwenhoek, 56, 311-321.
  •  
  • 33. Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O., and Jiang, C., 2018, Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: a review, Ecotoxicol. Environ. Saf., 165, 25-35.
  •  
  • 34. Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., Gonzalez-Munoz, M.T., Chekroun, Koutar Ben, and Gonzalez-Muñoz, M.T., 2003, Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization, Appl. Environ. Microbiol., 69, 2182-2193.
  •  
  • 35. RoyChowdhury, A., Sarkar, D., and Datta, R., 2015, Remediation of acid mine drainage-impacted water, Curr. Pollut. Reports, 1, 131-141.
  •  
  • 36. Sánchez-Andrea, I., Sanz, J.L., Bijmans, M.F.M., and Stams, A.J.M., 2014, Sulfate reduction at low pH to remediate acid mine drainage, J. Hazard. Mater., 269, 98-109.
  •  
  • 37. Sasikala, C., Jiwal, S., Rout, P., and Ramya, M., 2012, Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil, World J. Microbiol. Biotechnol., 28, 1301-1308.
  •  
  • 38. Sharma, S., Lee, M., Reinmann, C.S., Pumneo, J., Cutright, T.J., and Senko, J.M., 2020, Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities, Chemosphere, 249, 126117.
  •  
  • 39. Smilek, J., Sedláček, P., Kalina, M., and Klučáková, M., 2015, On the role of humic acids¡¯ carboxyl groups in the binding of charged organic compounds, Chemosphere, 138, 503-510.
  •  
  • 40. Sugimori, D., Watanabe, M., and Utsue, T., 2013, Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions, Appl. Microbiol. Biotechnol., 97, 871-880.
  •  
  • 41. Tang, H., Pu, W.C., Cai, C.F., Xu, J.P., and He, W.J., 2016, Remediation of acid mine drainage based on a novel coupled membrane-free microbial fuel cell with permeable reactive barrier system, Polish J. Environ. Stud., 25, 107-112.
  •  
  • 42. Tao, W., Kasuga, T., Li, S., Huang, H., and Fan, Z., 2019, Homoethanol production from cellobionate and glycerol using recombinant Klebsiella oxytoca strains, Biochem. Eng. J., 151, 107364.
  •  
  • 43. Tejeda-agredano, M., Mayer, P., and Ortega-calvo, J., 2014, The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime, Environ. Pollut., 184, 435-442.
  •  
  • 44. Tikhonov, V.V., Yakushev, A.V., Zavgorodnyaya, Y.A., Byzov, B.A., and Demin, V.V., 2010, Effects of humic acids on the growth of bacteria, Eurasian Soil Sci., 43, 305-313.
  •  
  • 45. Tolonen, E.T., Sarpola, A., Hu, T., Rämö, J., and Lassi, U., 2014, Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals, Chemosphere, 117, 419-424.
  •  
  • 46. Trevors, J.T., 1984, Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil, Plant Soil, 77, 285-293.
  •  
  • 47. Vadapalli, V.R.K., Zvimba, J.N., Mathye, M., Fischer, H., and Bologo, L., 2015, Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry, Environ. Technol., 36, 2515-2523.
  •  
  • 48. Wang, D., Zheng, G., and Zhou, L., 2012, Isolation and characterization of a nitrobenzene-degrading bacterium Klebsiella ornithinolytica NB1 from aerobic granular sludge, Bioresour. Technol., 110, 91-96.
  •  
  • 49. Yan, F. and Schubert, S., 1996, Soil pH increase due to biological decarboxylation of organic anions, Soil Biol. Biochem., 28, 617-624.
  •  
  • 50. Yuan, J.H., Xu, R.K., Qian, W., and Wang, R.H., 2011, Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars, J. Soils Sediments, 11, 741-750.
  •  
  • 51. Zhang, Xiaohui, Tang, S., Wang, M., Sun, W., Xie, Y., Peng, H., Zhong, A., Liu, H., Zhang, Xiaowei, Yu, H., Giesy, J.P., and Hecker, M., 2019, Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river, Chemosphere, 217, 790-799.
  •  

This Article

  • 2021; 26(1): 34-44

    Published on Feb 28, 2021

  • 10.7857/JSGE.2021.26.1.034
  • Received on Jan 6, 2021
  • Revised on Jan 9, 2021
  • Accepted on Feb 3, 2021

Correspondence to

  • Chang Gyun Kim
  • 1Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Korea
    2

  • E-mail: cgk@inha.ac.kr