• Removal of 2,4-D by an Fe(II)/persulfate/Electrochemical Oxidation Process
  • Young Hwan Hyun·Jiyeon Choi·Won Sik Shin*

  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • Fe(II)/과황산/전기화학적 산화 공정에 의한 2,4-D의 제거
  • 현영환·최지연·신원식*

  • 경북대학교 건설환경에너지공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Amasha, M., Baalbakim A., and Ghauch, A., 2018, A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen, Chem. Eng. J., 350, 395-410.
  •  
  • 2. Bennedsen, L.R., Muff, J., and Sogaard, E.G., 2012, Influence of chloride and carbonates on the reactivity of activated persulfate, Chemosphere, 86(11), 1092-1097.
  •  
  • 3. Brillas, E., Boye, B., Sirés, I., Garrido, J.A., Rodríguez, R.M., Arias, C., Cabot. P.-L., and Comninellis, C., 2004, Electrochemical destruction of chlorophenoxy herbicides by anodicoxidation and electro-Fenton using a boron-doped diamond electrode, Electrochim. Acta, 49(25), 4487-4496.
  •  
  • 4. Brillas, E., Baños, M.Á., Skoumal, M., Cabot, P.L., Garrido, J.A., and Rodríguez, R.M., 2007, Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes, Chemosphere, 68(2), 199-209.
  •  
  • 5. Bu, L., Shi, Z., and Zhou, S., 2016, Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant, Sep. Purif. Technol., 169, 59-65.
  •  
  • 6. Cai, J., Zhou, M., Yang, W., Pan, Y., Lu, X., and Serrano, K.G., 2018, Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation, Chemosphere, 212, 784-793.
  •  
  • 7. Cai, J., Zhou, M., Pan, Y., and Lu, X., 2020, Degradation of 2,4-dichlorophenoxyacetic acid by anodic oxidation and electro-Fenton using BDD anode: Influencing factors and mechanism, Sep. Purif. Technol., 230, 115867.
  •  
  • 8. Carvalho, L., Soares-Filho, A., Lima, M.S., Cruz-Filho, J.F., Dantas, T.C.M., and Luz, G.E.Jr., 2020, 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation on WO3-TiO2-SBA-15 nanostructured composite, Environ. Sci. Pollut. Res., 28, 7774-7785, Published online: https://doi.org/10.1007/s11356-020-11085-4.
  •  
  • 9. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., and Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite), Chem. Eng. J., 313, 498-507.
  •  
  • 10. Choo, C.-O., Lee, J.0K., Lee, C.-J., Park, K.-H., and Jeong, G.-C., 2009, Origin of B, Br and Sr in groundwater from Bukahn-myeonn, Yeongcheon, Gyoengbuk province, with emphasis on hydrochemistry, J. Eng. Geol., 19(2), 235-250, 2009.
  •  
  • 11. Dargahi, A., Nematollahi, D., Asgari, G., Shokoohi, R., Ansari, A., and Samarghandi, M.R., 2018, Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three dimensional electrode reactor with G/¥â-PbO2 anode: Taguchi optimization and degradation mechanism determination, RSC Adv., 8, 39256-39268.
  •  
  • 12. Devi, P., Das, U., and Dalai, A.K., 2016, In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems, Sci. Total Environ., 571, 643-657.
  •  
  • 13. Fiorenza, R., Mauro, A.D., Cantarella, M., Privitera, V., and Impellizzeri, G., 2019, Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO2, J. Photochem. Photobiol. A, 380, 111872.
  •  
  • 14. IARC (International Agency for Research on Cancer), 2015. World Health Organization, Press Release No 236. IARC Monographs evaluate DDT, Lindane, and 2,4-D, www.iarc.fr/en/media-centre/pr/2015/pdfs/pr236_E.pdf.
  •  
  • 15. Jaafazadeh, N., Ghanbari, F., and Zahedi, A., 2018, Coupling electroxodiation and oxone for degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution, J. Water Process Eng., 22, 203-209.
  •  
  • 16. Köster, D., Jochmann, M.A., Lutze, H.V., and Schmidt, T.C., 2019, Monitoring of the total carbon and nitrogen balance during the mineralization of nitrogen containing compounds by heat activated persulfate, Chem. Eng. J., 367, 160-168.
  •  
  • 17. Liang, C., Wang, Z.-S., and Bruell, C.J., 2007, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66(1), 106-113.
  •  
  • 18. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55(9), 1213-1223.
  •  
  • 19. Liang, C., Wang, Z.S., and Mohanty, N., 2006, Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20oC, Sci. Total Environ., 370(2-3), 271-277.
  •  
  • 20. Liu, H., Wang, C., Zhong, X., Xuanm X., Jiang, C., and Cui, H., 2007, A novel electro-Fenton process for water treatment:  reaction-controlled pH adjustment and performance assessment, Environ. Sci. Technol., 41(8), 2937-2942.
  •  
  • 21. Long, A. and Zhang, H., 2015, Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe2+/persulfate process, Environ. Sci. Pollut. Res., 22, 11606-11616.
  •  
  • 22. Malakootian, M. and Ahmadian, M., 2019, Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes, Water Sci. Technol., 80(3), 587-596.
  •  
  • 23. Matzek, L.W., Tiption, M.J., Farmer, A.T., Steen, A.D., and Carter, K.E., 2018, Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement, Environ. Sci. Technol., 52(10), 5875-5883.
  •  
  • 24. MOE (Ministry of Environment), 2019, Framework act on water management, Sejong, Korea.
  •  
  • 25. NIER (National Institute of Environmental Research), 2015, Candidate list analysis of water and water-ecosystem quality criteria, NIER-SP2014-359.
  •  
  • 26. Saha, S., Reza, A.H.M.S., and Roy, M.K., 2019, Hydrochemical evaluation of groundwater quality of the Tista floodplain, Rangpur, Bangladesh, Appl. Water Sci., 9, 198.
  •  
  • 27. Zhao, L., Ji, Y., Kong, D., Lu, J., Zhou, Q., and Yin, X., 2016, Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process, Chem. Eng. J., 303, 458-466.
  •  

This Article

  • 2021; 26(1): 45-53

    Published on Feb 28, 2021

  • 10.7857/JSGE.2021.26.1.045
  • Received on Jan 22, 2021
  • Revised on Jan 26, 2021
  • Accepted on Feb 19, 2021

Correspondence to

  • Won Sik Shin
  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • E-mail: wshin@knu.ac.kr