• Feasibility of Chemical Washing and Froth-flotation Separation Processes for the Remediation of Natural Origin Fluorine-enriched Soil
  • Jeonghwan Cho1·Dong-Jun Baek1·Moon Young Jung2·Jinsung An1,2*

  • 1Department of Environment Safety System Engineering, Semyung University, 65 Semyung-ro, Jecheon-si 27136, Korea
    2Department of Biological & Environmental Engineering, Semyung University, 65 Semyung-ro, Jecheon-si 27136, Korea

  • 자연기원 불소축적토양 정화를 위한 화학적 세척 및 부유선별 공법의 적용성 평가
  • 조정환1·백동준1·정문영2·안진성1,2*

  • 1세명대학교 환경안전시스템공학과
    2세명대학교 바이오환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Anderson, P.E. and William, C., 1993, Innovative Site Remediation Technology Soil Washing/Soil Flushing, Vol. 3, American Academy of Envrionmental Engineers, USA.
  •  
  • 2. Baek, D.-J., Kim, Y.-E., Jung, M.Y., Yoon, H.-O., and An, J., 2021, Feasiblilty of a chemical washing method for treating soil enriched with fluorine derived from mica, Miner., 11(2), 134.
  •  
  • 3. Beiyuan, J., Li, J.-S., Tsang, D.C.W., Wang, L., Poon, C.S., Li, X.-D., and Fendorf, S., Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong, Sci. Total Environ., 599-600, 679-688.
  •  
  • 4. Chen, W., Pang, X.-F., LI, J.-H., and Hang, X., 2013, Effect of oxalic acid and humic acid on the species distribution and activity of fluoride in soil, Asian J. Chem., 25(1), 469-474.
  •  
  • 5. Choo, C.-O., Kim, J.-T., Chung, I.-M., Kim, N.-W., and Jeong, G.-C., 2008, Ceochemical aspects of groundwater in granite area and origin of fluoride with emphasis on the water-rock interaction, J. Eng. Geol., 18(1), 103-115.
  •  
  • 6. Crispen, M.T., Kudzai, R., and Haleden, C., 2021, Nano-silica based mineral flotation frother: synthesis and flotation of platinum group metal (PGMs), Miner. Eng., 166, 106881.
  •  
  • 7. Crawford, C.B. and Quinn, B., 2017, 9-microplastic separation techniques, Microplastic Pollut., 203-218.
  •  
  • 8. Davison, C.M., Thomas, R.P., McVey, S.E., Perala, R., Littlejohn, D., and Ure, A.M., 1994, Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal. Chim. Acta., 291(3), 277-286.
  •  
  • 9. Dermont, G., Bergeron, M., Richer-Lafleche, M., and Mercier, G., 2010, Remediation of metal-contaminated urban soil suing flotation technique, Sci. Total Environ., 408(5), 1199-1211.
  •  
  • 10. Fuge, R., 2019, Fluorine in the environment, a review of ist sources and geochemisty, Appl. Geochem., 100, 393-406.
  •  
  • 11. Gao, H., Zhang, Z., and Wan, X., 2012, Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants, Environ. Geochem. Health, 34(5), 551-562.
  •  
  • 12. Jung, M.Y., Kim, S.H., An, Y.H., Lee, Y.J., Lee, C.H., Kim, J.W., and Jeon, C.S., 2015, Remediation technologies and characteristics of contaminated soil in the vicinity of Sang-Dong mine, J. Korean Soc. Miner. Energy Resour. Eng., 52(1), 31-41.
  •  
  • 13. Jung, M.Y., 2018, Upgrading benefication for the high grade of quartizite ore, J.Korean Soc. Mincr. Energy Resour. Eng., 55(5), 405-413.
  •  
  • 14. Kelly, E.G. and Spottiswood, D.J., 1982, Introducing to Mineral Processing, A Wiley-Interscience Publication, New York.
  •  
  • 15. Lee, J.-H., Jeong, J.-O., Kim, K.-K., Lee, S.-W., and Kim, S.-O., 2018, Origin of fluorine contained in rocks within the Eulwangsan, Yongyudo, Econ. Envrion. Geol., 51(6), 521-529.
  •  
  • 16. Li, Y., Jiang, H., and Yang, X., 2017, Fluorine follows water: effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite, Geochim. Cosmochim. Acta, 217, 16-27.
  •  
  • 17. McQuaker, N.R. and Gurney, M., 1977, Determination of total fluoride in soil and vegetation using an alkali fusion-selective ion electrode technique, Anal. Chem., 49(1), 53-56.
  •  
  • 18. Moon, D.H., Jo, R., Koutsospyros, A., Cheong, K.H., and Park, J.-H., 2015, Soil washing of fluorine contaminated soil using various washing solutions, Bull. Environ. Cantam. Toxicol., 94(3), 334-339.
  •  
  • 19. Vieira dos Santos, E., Saez, C., Canizares, P., Ribeiro da Silva, D., Martinez-Huitle, C.A., and Rodrigo, M.A., 2017, Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches, Chem. Eng. J., 310, 581-588.
  •  
  • 20. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils using an improved sequential extraction procedure, Anal. Chim. Acta., 436(2), 309-323.
  •  
  • 21. Wills, B.A. and Napier-Munn, T, 2005, Wills¡¯ Minerals Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th edition, Butterworth-Heinemann, Oxford.
  •  
  • 22. Yi, X., Qiao, S., Ma, L., Wang, J., Ruan, J., 2017, Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.). Environ. Geochem. Health., 39(5), 1005-1016.
  •  

This Article

  • 2021; 26(2): 28-34

    Published on Apr 30, 2021

  • 10.7857/JSGE.2021.26.2.028
  • Received on Apr 16, 2021
  • Revised on Apr 16, 2021
  • Accepted on Apr 20, 2021

Correspondence to

  • Jinsung An
  • 1Department of Environment Safety System Engineering, Semyung University, 65 Semyung-ro, Jecheon-si 27136, Korea
    2Department of Biological & Environmental Engineering, Semyung University, 65 Semyung-ro, Jecheon-si 27136, Korea

  • E-mail: jsan@semyung.ac.kr