• Assessment of Water Pollution by Discharge of Abandoned Mines
  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho;
  • Department of Environmental Science, Kangwon National University;Division of Biological Environment, Kangwon National University;Division of Biological Environment, Kangwon National University;Department of Environmental Eng., University of Seoul;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Environmental Science, Kangwon National University;
  • 휴폐광산 지역에서 유출되는 하천수의 오염도 평가
  • 김휘중;양재의;옥용식;이재영;박병길;공성호;전상호;
  • 강원대학교 환경과학과;강원대학교 생물환경학부;강원대학교 생물환경학부;서울시립대학교 환경공학부;한양대학교 화학공학과;한양대학교 화학공학과;강원대학교 환경과학과;
Abstract
Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

옥동천 유역의 상류에 위치한 명진탄광, 서진탄광, 옥동탄광 등이 1988년 이후 석탄합리화 사업으로 인하여 휴폐광 되었다. 따라서 많은 양의 광산 폐재가 적당한 처리시설이 없이 그대로 유입되어 하류지역의 수질오염을 야기 시킨다. 폐탄광으로부터 유출되는 침출수와 산성광산배수는 pH $2.7\sim4.5$의 강한 산성을 나타내며, 총용존물질은 $1,030\sim1,947mg/L$로 높은 범위를 나타낸다. 또한 Fe, Cu, Cd 같은 중금속의 농도와 음이온인 황산이온 등도 매우 높은 농도를 보인다. 옥동천내에 포함된 중금속의 농도는 Fe>Al>Mn>Zn>Cu>Pb>Cd 순으로 나타났으며, 철의 경우 산성광산배수와 침출수로 부터 옥동천 하류의 수질과 토양의 질을 나타내는 지표가 된다. 구리농도는 풍수기에 공재댐 배출수에서 높은 농도를 나타냈다. 표층수의 수질오염지표는 폐탄광의 산성광산배수가 유입되는 옥동천 본류 상류에서 $16.3\sim47.1$을 나타냈다. 반면에 구광재댐과 신광재댐 및 폐탄광의 배출수가 유입되는 중류에서 $10.6\sim19.5$를, 하류에서는 평균값인 $10.6\sim14.9$를 보여, 상류지역의 폐탄광의 산성광산배수가 옥동천의 주 오염원인 것으로 나타났다.

Keywords: Water pollution;Acid Mine Drainage;Heavy metals;Water Pollution Index;

Keywords: 수질오염;산성광산배수;중금속들;하천수오염평가지수;

References
  • 1. 김진범, 전상호, 김휘중, 1996, 광산배수 수용 하천의 중금속이온 평형에 관한 연구, 자원환경지질학회, 29(6), 733-738
  •  
  • 2. 유재영, 1995, 광산배 수의 산성화 및 그에 따른 환경문제, 대한지질학회 및 대한자원환경지질학회 제11회 공동학술경연회발표논문집, p. 32-55
  •  
  • 3. 정명채, 1999, 휴/폐광 금은 광산 주변의 토양오염조사와 복구시스템 연구, 자원환경지질학회, 32(1), p. 78-79
  •  
  • 4. 최우진, 1997, 산성폐수에 의해 오염된 지표수의 오염도 평가에 관한 연구, 한국토양환경학회 춘계학술발표회 논문집, 고려대학교
  •  
  • 5. 통산산업부, 1997, 광산물 수급 현황
  •  
  • 6. 한완수, 최재규, 이재영, 최상일, 2004, 산성 광산폐수 처리를 위한 반응벽체의 반응물질로서 사업부산물 적용에 관한 연구, 2004년 한국지하수토양환경학회 춘계학술발표회, 한국지하수토양학회, 국립환경연구원, p.260
  •  
  • 7. Bigham, j. M., Schwertmann, U., Carlson, L., and Murad, E., 1990, Apoory crystalli-zed oxyhydroxysulfate of iron formed by bacterial oxidation fo Fe in acid mine waters, Geochim. Cosmochim. Acta 54, 2743-2758
  •  
  • 8. Chakrabarti, C.L., Lu., Y, Gregoire., D.C. Back, M.H., and Schroeder, W.H., 1994, Kinetic studies of metal speciation using Chelexcation exchange resi n: Appliction to cadmium, copper and lead speciation in river water and sn ow, Environ. Sci. Technol., 28, 1957-1967
  •  
  • 9. Figura and McDuffie, 1980, Determination of labilities of soluble trace metal fr -action in aqueous ligand media and composition of the methods with ano -die stripping voltrmmetry. Analytical chemistry, 51, 120-125
  •  
  • 10. Florence, T.M. and Batley, G.E., 1988, Chemical speciation and trace element toxicity, Chemistry in Australia, p. 363-366
  •  
  • 11. Hector, M.L. and Isamu S., 1989, Bacterial Leaching of a Sulfide Ore by Thiobacillus ferrooxidans and Thiobacillus thiooxians Part II: Column Leaching Studies, Hydrometallurgy, 22, 301-310
  •  
  • 12. Murr, L.E. and Mehta, A.P., 1982, Coal desulfurization by leaching involving acidophyllic and thermophyllic microorganism. Biotech. Bioeng., 24, 743-748
  •  
  • 13. Sengupta, M., 1993, Environmental impacts of mine drainage on streams of United States. Env. Geol. Water Sic., 11, 141-152
  •  
  • 14. Stumm, W. and J.J. Morgan, 1981, Aquatic chemistry: New York, Wiley-Interscie-nce, p. 780
  •  
  • 15. Sullivan, P.J., 1988. Iron sulfide oxidation and the chemistry of acid generation, Geol. Water Sci., 11, p. 289-295
  •  
  • 16. Zaihua, L., 1991, Effect of coal mine waters of variable pH on spring water quality: A case study. Env. Geol. Water Sci., 17, 219-225
  •  

This Article

  • 2005; 10(5): 25-36

    Published on Oct 1, 2005