• A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test
  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong;
  • Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;Environmental Geology Team, Korea Rural Community & Agriculture Corporation;
  • 복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구
  • 정상용;강동환;이민희;손주형;
  • 부경대학교 환경지질과학과;부경대학교 환경지질과학과;부경대학교 환경지질과학과;한국농촌공사 환경지질팀;
Abstract
Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

여러 개의 층으로 구성된 토양층에서 연속주입 추적자시험을 수행하여, 불포화대와 포화대 구간에서의 수리분산특성 차이를 추적자의 농도이력곡선, 시간에 따른 농도변화 및 농도변화율, 그리고 거리에 따른 농도비 분석을 통해 비교 연구하였다. 연속주입 추적자시험에 의하면, 약 160시간이 경과된 후에 불포화대와 포화대에서 Rhodamine WT 최대농도의 차이는 약 $13{\sim}15$배 정도에 달하였고, 시험시간 대 추적자 농도증가율의 차이는 약 10배 정도로 나타났다. 또한 시간에 따른 추적자 농도이력곡선의 변화와 농도변화율이 불포화대에 비하여 포화대에서 크게 나타났다. 주입공에서의 이격거리에 따른 추적자의 농도비는 포화대 구간에서 더 빠르게 선형적으로 감소하였으며, 그 이후에 농도비가 2배 이하로 완만해 지는데 걸린 시간은 포화대 구간이 더 길었다. 이러한 차이들은 여러 개의 층서로 구성된 토양층의 포화대에서는 지하수가 존재하며, 또한 매질의 불균질성이 크고 투수성이 다양하기 때문에, 비교적 균질한 층서를 이루는 불포화대에 비하여 추적자 용액의 농도는 낮고, 추적자의 확산이 느리게 진행되어진데서 기인하였다. 그리고 포화대 구간에서의 유효공극율은 $10.19{\sim}10.50%$, 종분산지수는 $0.80{\sim}l.98m$, 횡분산지수는 $0.02{\sim}0.04m$의 범위로 산정되었으며, 실내주상시험의 종분산지수와 비교할 때 12배 이상의 규모종속효과가 나타났다.

Keywords: Continuous injection tracer test;Unsaturated zone;Saturated zone;Hydrodynamic dispersion;Breakthrough curve;Dispersivity;Scale-dependent effect;

Keywords: 연속주입 추적자시험;불포화대;포화대;수리분산;농도이력곡선;분산지수;규모종속효과;

References
  • 1. 김용제, 김태희, 김구용, 황세호, 채병곤, 2005, 파쇄대 응회암 대수층의 지하수 유동 특성화 기법, 지하수토양환경, 10(4), 33-44
  •  
  • 2. 김정우, 이진용, 천정용, 이명재, 김형수, 이강근, 2004, 형광추적자 Rhodamine WT의 측정농도에 영향을 주는 요인 고찰, 지질학회지, 40(3), 331-340
  •  
  • 3. 문상호, 함세영, 우남칠, 이철우, 2001, 지하수 추적자, 시그마프레스, p. 148
  •  
  • 4. 이진용, 천정용, 이강근, 이민효, 윤정기, 2001, 다공질 천층 대수층에서의 추적자 이동 연구, 지질학회지, 37(2), 309-316
  •  
  • 5. 장태우, 강필종, 박석환, 황상구, 이동우, 1983, 부산가덕도폭, 한국동력자원연구소, p. 22
  •  
  • 6. 지오그린21, 2003, 용수댐 추적자시험 및 수위/수질 조사분석, p. 225
  •  
  • 7. 한정상, 1998, 지하수환경과 오염, 박영사, p. 1071
  •  
  • 8. Broermann, J., Bassett, R.L., Weeks, E.P., and Borgstrom, M., 1997, Estimation of $a_1$, Velocity, Kd and Confidence Limits from Tracer Injection Test Data, Ground Water, 35(6), 1066-1076
  •  
  • 9. Brouyere, S., Carabin, G, and Dassargues, A., 2005, Influence of Injection Conditions on Field Tracer Experiments, Ground Water, 43(3), 389-400
  •  
  • 10. Brouyere, S., Dassargues, A., and Hallet, V., 2004, Migration of contaminants through the unsaturated zone overlying the Hes-baye chalky aquifer in Belgium: a field investigation, Journal of Contaminant Hydrology, 43(3), 389-400
  •  
  • 11. Charles, H. and Steven, M.G., 2000, Rate-limited mass transfer of macrodispersion: Which dominates plume evolution at the Macrodispersion Experiment(MADE) site?, Water Resources Research, 36(3), 637-650
  •  
  • 12. Feuerstein, D.L. and Sellek, R.E., 1963, Fluorescent tracers for dispersion measurements, American Society of Civil Engineers Proceedings, 89(SA4), p. 1-21
  •  
  • 13. Gelhar, L.W., Welty, C., and Rehfeldt, K.R., 1992, A critical review of data on field-scale dispersion in aquifers, Water Resources Research, 28(7), 1955-1974
  •  
  • 14. Irne, F., Kasteel, R, Flurry, M., and Flhler, H., 1999, Longitudinal and lateral dispersion in an unsaturated field soil, Water Resources Research, 35(10), 3049-3069
  •  
  • 15. Joseph, T. and Kitanidis, P.K, 1994, Solute dilution at the Borden and Cape Cod groundwater tracer tests, Water Resources Research, 30(11), 2883-2890
  •  
  • 16. Lee, J.Y., Kim, J.W., Cheon, J.Y., Yi, M.J., and Lee, K.K, 2003, Combined performance of pumping and tracer tests: A case study, Geosciences Journal, 7(3), 237-241
  •  
  • 17. Liping, P. and Murray, C., 1999, A field study of nonequilibrium and facilitated transport of Cd in an alluvial gravel aquifer, Ground Water, 37(5), 785-792
  •  
  • 18. Novakowski, K.S., 1992, The Analysis of Tracer Experiments Conducted in Divergent Radial Flow Fields, Water Resources Research, 28(12), 3215-3225
  •  
  • 19. Repogle, J.A., Myers, L.E., and Brust, K.J., 1966, Flow measurements with fluorescent tracers, Journal of the Hydraulics Division ASCE, 92, 1-15
  •  
  • 20. Rudolph, D.L., Kachanoski, R.G., Celia, M.A., Leblanc, D.R., and Stevens, J.H., 1996, Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results, Water Resources Research, 32(3), 519-532
  •  
  • 21. Sauty, J.P. and Kinzelbach, W., 1992, CATTI: Computer aided tracer test interpretation, International Groundwater Modeling Center, Golden, Colorado
  •  
  • 22. Sudicky, E.A., 1986, A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resources Research, 22(13), 2069-2082
  •  

This Article

  • 2006; 11(4): 48-56

    Published on Aug 1, 2006