• Risk Assessment of Heavy Metals in the Vicinity of the Abandoned Metal Mine Areas
  • Lee, Jin-Soo;Kwon, Hyun-Ho;Shim, Yon-Sik;Kim, Tae-Heok;
  • Technology Research Center, Mine Reclamation Corporation;Technology Research Center, Mine Reclamation Corporation;Technology Research Center, Mine Reclamation Corporation;Technology Research Center, Mine Reclamation Corporation;
  • 폐금속광산지역 중금속의 위해성 평가
  • 이진수;권현호;심연식;김태혁;
  • 광해방지사업단 기술연구센터;광해방지사업단 기술연구센터;광해방지사업단 기술연구센터;광해방지사업단 기술연구센터;
Abstract
An environmental survey from three abandoned metal mine areas was undertaken on to assess the risk of adverse health effects on human exposure to heavy metals influenced by past mining activities. Tailings contained high concentrations of heavy metals may have a impact on soils and waters around the tailing piles. In order to perform the human risk assessment, chemical analysis data of soils, rice grains and waters for As, Cd, Cu and Pb have been used. The HQ values for heavy metals via the rice consumption were significantly higher compared with other exposure pathways in all metal mine areas. The resulting HI values in three mine areas were higher than 9.0, and their toxic risk due to rice ingestion was strong in these mine areas. The cancer risk of being exposed to As by the rice consumption from the A, B and C mine areas was $5.1\;{\times}\;10^{-3}$, $6.8\;{\times}\;10^{-3}$ and $3.1\;{\times}\;10^{-3}$, respectively. The As cancer risk via the exposure pathway of rice ingestion from these mine areas exceeds the acceptable risk of 1 in 10,000 set for regulatory purposes. Thus, the daily intakes of rice by the local residents from these mine areas can pose a potential health threat if exposed by long-term As exposure.

본 연구에서는 폐금속광산 지역에서 중금속이 인체에 미치는 위해영향을 정량적으로 평가하기 위하여 3개 금속광산 주변 지역에서 농경지 토양, 농작물 및 지하수를 채취하여 화학분석을 실시하였다. 이들 폐금속광산 주변에 야적된 광산폐기물(광미)은 바람이나 집중 강우에 의해 광미댐 하부에 있는 농경지나 하천으로 유입되어 주변 환경을 오염시킬 가능성이 크다. 따라서 폐금속광산에서의 인체노출경로는 농사활동을 통한 토양의 섭취, 지하수(식수)의 섭취, 쌀의 섭취, 농사활동에 의한 토양의 피부접촉 등 4가지로 파악할 수 있었다. 각 노출경로별 비발암성위해도 평가 결과, 모든 광산에서 쌀의 섭취를 통한 중금속의 독성위해도가 가장 높게 나타났다. 광산별 4가지의 인체노출경로를 총합한 HI 지수가 3개 광산 모두 9.0 이상을 나타내었으며, 특히 B 광산이 HI 29.2로 중금속에 의한 독성위해도가 가장 높은 것으로 판명되었다. 비소에 대한 발암위해도 평가 결과, 3개의 폐금속광산 지역에서 쌀 섭취의 노출경로를 통한 비소에 의해 암이 발생할 확률이 천명중의 1명 이상으로 높게 나타났다. 이는 환경부 토양오염 위해성평가지침(안)과 미국 EPA에서 제시한 허용가능한 초과발암위해도보다도 크므로 이들 지역 주민들이 비소에 의해 오염된 농작물(쌀)을 지속적으로 장기간 섭취하게 된다면 비소가 건강에 미치는 위해영향이 크다고 판단된다.

Keywords: Arsenic (As);Exposure pathway;Toxic risk;Cancer risk;Risk assessment;

Keywords: 비소;노출경로;독성위해도;발암위해도;인체위해성 평가;

References
  • 1. 이진수, Ben A Klinck, 전효택, 2001, 비소 및 독성중금속들의 인 체위해성 평가 모델링, 한국자원공학회지, 38(2), 136-145
  •  
  • 2. 이진수, 전효택, 2004, 금속광산지역 독성 중금속원소들의 인체 위해성 평가, 자원환경지질, 37(1), 73-86
  •  
  • 3. 이진수, 전효택, 2005, 오염된 토양, 지하수 및 쌀의 인체노출에 따른 비소의 위해성 평가, 자원환경지질, 38(5), 535-545
  •  
  • 4. 이진수, 전효택, 김경웅, 김주용, 2003, 폐금속광산 지역에서의 독성중금속에 대한 위해성평가, 한국지구시스템공학회지, 40(4), 264-273
  •  
  • 5. 환경부, 2006, 토양오염 위해성평가지침(안)
  •  
  • 6. Akagi, H., Castillo, E.S., Cortes-Maramba, N., Francisco-Rivera, A.T. and Timbang, T.D., 2000, Health assessment for mercury exposure among schoolchildren residing near a gold processing and refining plant in Apokon, Tagum, Davao del Norte, Philippines, Sci. Tot. Environ., 259, 31-43
  •  
  • 7. Alcock, R.E., Sweetman, A.J., Juan, C.Y. and Jones, K.C., 2000, A genetic model of human lifetime exposure to persistent organic contaminants: development and application to PCB-101, Environ. Poll., 110, 253-265
  •  
  • 8. Chung, E.H. Lee, J.S. Chon, H.T. and Sager, M., 2005, Environmental Contamination and Digestibility of Arsenic and Heavy Metals around the Dongjeong Au-Ag-Cu mine, Korea, Geochemistry: Exploration Environment Analysis, 5, 69-74
  •  
  • 9. Green, E., Short, S.D., Stutt, E. and Harrison, P.T.C., 2000, Protecting environmental quality and human health: strategies for harmonization, Sci. Tot. Environ., 256, 205-213
  •  
  • 10. Kimmel, G., Ohanian, E. and Vu, V., 1999, Framework for human health risk assessment, Human. Ecol. Assess., 5, 997-1001
  •  
  • 11. Kolluru, R.V., Bartell, S.M., Pitblado, R.M. and Stricoff, R.S., 1996, Risk Assessment and Management Handbook, McGrow- Hill, New York, 870p
  •  
  • 12. Lee, S.C., Guo, H., Lam, S.M.J. and Lau, S.L.A., 2004, Multipathway risk assessment on disinfection by-productions of drinking water in Hong Kong, Environ. Res., 94, 47-56
  •  
  • 13. Lee, J.S., Chon, H.T. and Jung, M.C., 2005a, Toxic risk assessment and environmental contamination of heavy metals around abandoned metal mine sites in Korea, Key Eng. Mater., 277-279, 542-547
  •  
  • 14. Lee, J.S., Chon, H.T. and Kim, K.W., 2005b, Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site, Environ. Geochem. Hlth, 27, 185-191
  •  
  • 15. Lee, J.S., Klinck, B. and Moore, Y., 2000, Dispersal, risk assessment modelling and bioavailability of arsenic and other toxic heavy metals in the vicinity of two abandoned mine sites in Korea, British Geological Technical Report WE/00/1, 91p
  •  
  • 16. Paustenbach, D.J., 2002, Human and Ecological Risk Assessment: Theory and Practice, John Wiley and Sons, New York
  •  
  • 17. Sekhar, K.C., Chary, N.S., Kamala, C.T., Rao, J.V., Balaram, V. and Anjaneyulu, Y., 2003, Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study, Environ. Int., 29, 601-611
  •  
  • 18. US EPA, 1989a, Risk assessment guidance for superfund: Volume I Human health evaluation manual (Part A), EPA/540/1-89/ 002, Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C., USA
  •  
  • 19. US EPA, 1989b, Exposure Factors Handbook, EPA/600/8-89/ 043, Environmental Protection Agency, Office of Research and Development, OH, USA
  •  
  • 20. US EPA, 1997, Exposure factors handbook, EPA/600/P-95/ 002Fa (Update to Exposure Factors Handbook, EPA/600/8-89/ 043), Environmental Protection Agency Region I, Washington, D.C., USA
  •  

This Article

  • 2007; 12(1): 97-102

    Published on Feb 28, 2007