• Reduction of Hydraulic Conductivity in the Subsurface by the Formation of Aerobic Biobarrier
  • Bae, Bum-Han;Oh, Je-Ill;
  • Department of Civil & Environmental Engineering, Kyungwon University;Department of Civil & Environmental Engineering, ChungAng University;
  • 토양 내 호기성 생물벽체(Biobarrier)의 형성에 의한 투수계수의 제어
  • 배범한;오재일;
  • 경원대학교 토목환경공학과;중앙대학교 건설환경공학과;
Abstract
A series of batch and column experiments were conducted for the development of biobarrier technology which can be applied to containment and reduction of contaminants in soil and ground waters. The growth kinetic constants of Pseudomonas fluorescens on glucose or molasses were determined using batch experiments. The maximum specific growth rate (Vmax) of P. fluorescens at $23^{\circ}C$ on glucose or molasses were $0.246\;hr^{-1}$ and $0.073\;hr^{-1}$, respectively. However, molasses was selected as carbon source due largely to the absence of lag phase of P. fluorescens growth on molasses and economic reason. In constant head column experiments, the hydraulic conductivity of the column soil reduced by $6.8{\times}10^{-3}$ times from $4.1{\times}10^{-2}cm/sec$ to $2.8{\times}10^{-4}cm/sec$ after the inoculation of P. fluorescens and administration of carbon source and nutrients. The biomass concentration was observed highest in the column inlet. Measurements of carbon source and electron accepter (dissolved oxygen) concentration showed that the growth of P. fluorescence, which is the main reason for hydraulic conductivity reduction, was limited not by the concentration of carbon source but by the concentration of electron acceptor.

토양 및 지하수의 오염 확산을 방지하면서 오염물을 처리할 수 있는 생물벽체(Biobarrier)에 적용하기 위해 회분식실험과 칼럼 실험을 실시하였다. 회분식 실험에서는 순수 호기성 미생물 Pseudomonas fluorescens의 글루코즈와 당밀에 대한 동역학 상수를 산정하였다. P. fluorescens의 최대비성장속도(Vmax)는 글루코즈와 당밀을 사용하였을 때 $23^{\circ}C$에서 각각 $0.246\;hr^{-1}$, $0.073\;hr{-1}$로 글루코즈의 비성장속도가 빠르지만, P. fluorescence 성장 시 당밀에 대한 지체기가 없으며, 경제성을 고려하여 당밀을 칼럼실험의 탄소원으로 사용하였다. 일정수두 칼럼실험에서 P. fluorescence를 접종하고 영양원을 주입하면서 칼럼 내 토양의 투수계수 감소를 측정한 결과 영양원 주입 6일 만에 투수계수는 $4.1{\times}10^{-2}\;cm/sec$에서 $2.8{\tims}10^{-4}\;cm/sec$$6.8{\times}10^{-3}$배 감소하였고, 미생물량은 유입부에서 최대값을 나타냈다. 그러나 투수계수의 감소를 야기하는 미생물의 성장은 탄소원이 아닌 전자수용체(용존산소)의 농도에 의하여 제한되었다.

Keywords: Aerobic biobarrier;Electron acceptor;Hydraulic conductivity;Pseudomonas fluorescens;

Keywords: 호기성 생물벽체;전자수용체;투수계수;

References
  • 1. 김건하, 송영우, 구동영, 2000, 미생물 토양 주입을 통한 Biobarrier 형성, 대한환경공학회 논문집, 22, 927-938
  •  
  • 2. 최영화, 오재일, 배범한, 이태호, 류희욱, 2003, 탈질환경에서 투 과매질 내 생물벽체 형성, 대한환경공학회논문집, 25, 616-623
  •  
  • 3. APHA-AWWA-WPCF, 1995, Standard Methods, 19th Edition, American Public Health Association
  •  
  • 4. Beech, I.B., Gaylarde, C.C., Smith, J.J., and Geesey, G.G., 1991, Extracellular polysaccharides from Desulfovibrio desulfuricans and Pseudomonas fluorescens in the presence of mide and stainless steel, Appl. Microbiol. Biotechnol., 35, 65-71
  •  
  • 5. Filz, G.M., M.A. Widdowson, and Little, J.C., 2001, Barriercontrolled monitored natural attenuation, Environ. Sci. Technol., 35, 3225-3230
  •  
  • 6. Grindstaff, Megan, 1998, Bioremediation of Chlorinated Solvent Contaminated Groundwater, U.S. EPA
  •  
  • 7. James, G.A., Warwood, B.K., Cunningham, A.B., Sturman, P.J., Hiebert, R., 1997, Evaluation of subsurface biobarrier formation and persistence, Proceedings of the 10th Annual Conference on Hazardous Waste Research, Manhattan, USA
  •  
  • 8. Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., and Wu, S.C., 2003, Enhanced PCE dechlorination by biobarrier systems under different redox conditions, Wat. Res., 37, 4885-4894
  •  
  • 9. Kim, G., Lee, S., and Kim, Y., 2006, Subsurface biobarrier formation by microorganism injection for contaminant plume control, J. Bioscience and Bioeng., 101, 142-148
  •  
  • 10. Komlos, J., Cunningham, A.B., Warwood, B.B., and James, G., 1998, Biofilm biobarrier formation and persistence in variable saturated zones, Proceedings of the 1998 Conference on Hazardous Waste Research, Manhattan, USA, 200-208
  •  
  • 11. Lee, W.Y., Park, Y., Ahn, J.K., Ka, K.H., and Park, S.Y., 2007, Factors influencing the production of endopolysaccharide and expolysaccharide from Ganederma applanatum, Enzyme and Microbial Technology, 40, 249-254
  •  
  • 12. Manahan, S.E., 1990, Hazardous Waste Chemistry, Toxicology and Treatment, Lewis Publisher, Chelsea, Michigan, USA
  •  
  • 13. Sheng, G.P., Yu, H.Q., and Yue, Z., 2006, Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila, International Biodeterioration & Biodegradation, 58, 89-93
  •  
  • 14. Thomas, J.M. and Ward, C.H., 1989, In situ biorestoration of organic contaminants in the subsurface, Environ. Sci. Technol., 23, 760-768
  •  
  • 15. U. S. EPA, 1995, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites, EPA 510/B/95/007
  •  
  • 16. Weiner, R., Langille, S., and Quintero, E., 1995, Structure, function and immunochemistry of bacterial expolysaccharides, J. Ind. Microbiol., 15, 339-346
  •  
  • 17. Yerushalmi, L., Manuel, M.F., and Guiot, S.R., 1999, Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation, 10, 341-352
  •  

This Article

  • 2007; 12(2): 1-8

    Published on Apr 30, 2007