• Development of Control Technology for Acid Mine Drainage by Coating on the Surface of Pyrite using Chemicals
  • Ji, Min-Kyu;Yoon, Hyun-Sik;Ji, Eung-Do;Lee, Woo-Ram;Park, Young-Tae;Yang, Jung-Seok;Jeon, Byong-Hun;Shim, Yon-Sik;Kang, Man-Hee;Choi, Jae-Young;
  • Natural Products Center, KIST-Gangneung;Natural Products Center, KIST-Gangneung;Natural Products Center, KIST-Gangneung;Natural Products Center, KIST-Gangneung;Natural Products Center, KIST-Gangneung;Natural Products Center, KIST-Gangneung;Department of Environmental Engineering, Yonsei University;Mine Reclamation Corporation;Mine Reclamation Corporation;Natural Products Center, KIST-Gangneung;
  • 산성광산배수의 발생저감을 위한 황철석 표면의 피막형성 기술개발
  • 지민규;윤현식;지은도;이우람;박영태;양중석;전병훈;심연식;강만희;최재영;
  • 한국과학기술연구원;한국과학기술연구원;한국과학기술연구원;한국과학기술연구원;한국과학기술연구원;한국과학기술연구원;연세대학교 환경공학부;한국광해관리공단;한국광해관리공단;한국과학기술연구원;
Abstract
Acid mine drainage occurs when sulfide minerals are exposed to an oxidizing environment. The objective of this study was to inhibit the oxidation of pyrite by applying various coating agent such as $KH_2PO_4$, MgO and $KMnO_4$ over its surface as an oxidation inhibitors. Experiments were conducted for 8 days to test the feasibility of oxidation inhibitors. The optimal condition of coating agent for standard pyrite and IK mine was the combination of 0.01M $KH_2PO_4$, 0.01M NaOAc and 0.01M NaClO. Otherwise, for YD mine the combination of 0.01M $KMnO_4$, 0.01M NaOAc and 0.01M NaClO. The $SO_4^{2-}$ reduction efficiency of pyrite, IK and YD mine samples was 70, 92 and 84%, respectively. For 8 days, no significant increase of $SO_4^{2-}$ from pyrite sample coated with inhibitor was observed. The pH of solution remains in between 4 to 6 for the reaction conditions.

Keywords: Pyrite;AMD;Surface coating agent;Tailing;

References
  • 1. 대한광업진흥공사, 1990, 한국의 석탄광(上), p. 410.
  •  
  • 2. 박권규, 박인화, 황세호, 신제현, 박윤성, 2006, 폐광산 지역 산성 광산배수 유출탐지를 위한 지구물리탐사: 부산 임기광산, 한국지구시스템공학회지, 43(1), 34-43.
  •  
  • 3. 부산광역시 보건환경연구원보, 2007, 17(2).
  •  
  • 4. 이규호, 김재곤, 이진수, 전철민, 박삼규, 김탁현, 고경석, 김통권, 2005, 건설현장 절취사면의 산성암반배수 발생특성과 잠재적 산발생능력 평가, 자원환경지질, 38(1), 91-99.
  •  
  • 5. 이규호, 김재곤, 김탁현, 이진수, 2006, 산성배수 발생저감을 위한 황철석 표면의 철인산염 피막형성연구, 자원환경지질, 39(1), 75-82.
  •  
  • 6. 염승준, 윤성택, 김주환, 박맹언, 2002, 동래 납석광산 산성광석 배수의 중화실험: 중금속 거동 특성 규명, 한국지하수토양환경학회지, 7(4), 69-76.
  •  
  • 7. 정영욱, 2004, 석탄광의 광산배수처리기술 현황 및 전망, 자원환경지질, 37(1), 107-111.
  •  
  • 8. 최선규, 박상준, 이평구, 김창성, 2004, 한반도 광상 성인유형에 따른 환경특성, 자원환경지질, 37(1), 1-19.
  •  
  • 9. 환경부, 2007, 전국지역별 산성물질 연중 강하량 분포파악 (보도자료).
  •  
  • 10. 한국광해관리공단, 2006, 옥동광산 광미 및 침출수 처리방안 연구, 광해방지사업단, p. 232.
  •  
  • 11. 한국지질자원연구원, 2007, 도로건설 절취사면의 산성배수 발생 저감을 위한 피막형성기술개발, 건설기술혁신 최종보고서, p. 79.
  •  
  • 12. 한국광해관리공단, 2008, Assessment of Waters and Sediments Impacted by Acid Rock Drainage at the Young Dong Coal Mine Site, South Korea, Final Report-Part A.
  •  
  • 13. 한국광해관리공단, 2008, 일광광산 토양오염 정밀조사 보고서. Berner, R.A., 1967, Sedimentary pyrite formation: an update, Am. J. Sci., 256, 773-785.
  •  
  • 14. Bttcher, M.E., Smock, A.M., and Cypionka, H, 1998, Sulfur isotope fractionation during experimental precipitation of iron (II) and manganese (II) sulfide at room temperature, Chem. Geo., 146, 127-134.
  •  
  • 15. Conference on Acid Rock Drainage, Vancouver, BC, p. 15-30.
  •  
  • 16. Evangelou, V.P., 2001, Pyrite microencapsulation tech-nologies: Principles and potential field application, Ecological Engineering, 12, 165-178.
  •  
  • 17. Harris, D.L. and Lottermoser, B.G., 2006, Evaluation of phosphate fertilizers for ameliorating acid mine waste, Appl. Geochem., 21, 1216-1225.
  •  
  • 18. Hood, Y.A., 1991, The kinetic of pyrite oxidation in marine systems. Ph.D. Thesis, University of Miami, FL.
  •  
  • 19. Huminicki, D.M.C. and Rimstidt J.D., 2009, Iron oxyhydroxide coating of pyrite for acid mine drainage control, Appl. Geochem., 24, 1626-1634.
  •  
  • 20. Johnson, D.B. and Hallberg, K.B., 2002, Pitfalls of passive mine water treatment: reviews, Environ. Sci. Bio-Technol, 1, 335-343.
  •  
  • 21. Johnson, D.B. and Hallberg, K.B., 2005, Acid mine drainage remediation options: A review, Sci. Total Environ., 338, 3-14.
  •  
  • 22. Lawrence, R.W., Jaffe, S., and Broughton, L.M., 1988, In-House Development of the net acid production test method, Coastech Research.
  •  
  • 23. Lawrence, R.W. and Wang, Y., 1997, Determination of neutralization potential in the prediction of acid rock drainage, Proceedings of the Fourth International.
  •  
  • 24. Lee, G., Bigham, J.M., and Faure, G., 2002, Removal of trace metals by co-precipitation with Fe, Al, and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee, Appl. Geochim., 17, 569-581.
  •  
  • 25. Nordstrom, D.K., 1982, Aqueous pyrite oxidation and the consequent formation of secondary iron materials. In: Hossner, L.R., Kittrick, J.A., Fanning, D.F. (Eds.), Acid Manipulation of Soil Minerals. Soil Science Society of America Press, Madison, p. 46.
  •  
  • 26. Scharer, J.M., Garga, V., Smith, R., and Halbert, B.E., 1991, Use of steady state models for assessing acid generation in pyritic mine tailings. In: The Second International Conference on the Abatement of Acid Drainage, Vol. 2, September 16-18, Montreal, Canada, p. 211.
  •  
  • 27. Singer, P.C. and Stumm, W., 1970, Acidic mine drainage: the rate-determining step, Science, 167, 1121-1123.
  •  
  • 28. Sobek, A.A., Schuller, W.A., Feeman, J.R., and Smith, R.M., 1978, Field and laboratory methods applicable to overburden and minesoils. EPA report No. 600/2-78-054, p. 47-50.
  •  
  • 29. USEPA and Hardrock Mining, 2003, A source book for industry in the northwest and alaska, Appendix C; Characterization of Ore, Waste Rock, and Tailings, C1-C17.
  •  
  • 30. Zhang, Y.L. and Evangelou, V.P., 1996, In fluence of iron oxide forming conditions on pyrite oxidation, Soil Science, 161, 852-864.
  •  

This Article

  • 2010; 15(4): 46-52

    Published on Aug 31, 2010

  • Received on Apr 20, 2010
  • Accepted on Jul 26, 2010