• Heavy Metal Effects on the Biodegradation of Fluorene by Sphingobacterium sp. KM-02 in liquid medium
  • Nam, In-Hyun;Kim, Jae-Gon;Chon, Chul-Min;
  • Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • Sphingobacterium sp. KM-02에 의한 Fluorene 분해에 미치는 배지 내 중금속 영향
  • 남인현;김재곤;전철민;
  • 한국지질자원연구원 지구환경연구본부 지질재해연구실;한국지질자원연구원 지구환경연구본부 지질재해연구실;한국지질자원연구원 지구환경연구본부 지질재해연구실;
Abstract
The heavy metal effects on the degradation of fluorene by Sphingobacterium sp. KM-02 was determined in liquid cultures. The results showed that 10 mg/L cadmium, copper, zinc, and lead not only affected the growth of KM-02 with fluorene but also the ability of growing or resting cells to degrade this compound. Growth and fluorene degradation were strongly inhibited by cadmium and copper at 10 mg/L, while the inhibitory effect of zinc and lead at the same concentration or at 100 mg/L were not significant. In contrast, arsenic did not affect degradation or growth, even at very high concentrations of 100 mg/L. Subsequent analyses additionally revealed that concentrations of arsenic remained unchanged following incubation, while those of cadmium and copper decreased significantly.

Keywords: Fluorene;Biodegradation;Sphingobacterium sp. KM-02;Heavy metal effects;

References
  • 1. Achten, C. and Hofmann, T., 2009, Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination, Sci. Total Environ., 407, 2461- 2473.
  •  
  • 2. Amor, L., Kennes, C., and Veiga, M.C., 2001, Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals, Bioresour. Technol., 78, 181-185.
  •  
  • 3. Antizar-Ladislao, B., Lopez-Real, J.M., and Beck, A.J., 2006, Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches, J. Hazard. Mater., 137, 1583-1588.
  •  
  • 4. Baath, E., 1989, Effect of heavy metals in soil on microbial processes and population, Water Air Soil Pollut., 47, 335-379.
  •  
  • 5. Bruins, M.R., Kapil, S., and Oehme, F.W., 2000, Microbial resistance to metals in the environment, Ecotoxicol. Environ. Saf., 45, 198-207.
  •  
  • 6. Burgess, J.E., Quarmby, J., and Stephensen, T., 1999, Role of micronutrients in activated sludge-based biotreatment of industrial effluents, Biotechnol. Adv., 17, 49-70.
  •  
  • 7. Casellas, M., Grifoll, M., Bayona, J.M., and Solanas, A.M., 1997, New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101, Appl. Environ. Microbiol., 63, 819-826.
  •  
  • 8. Chen, S.Y. and Lin, J.G., 2001, Effect of substrate concentration on bioleaching of metal-contaminated sediment, J. Hazard. Mater. B, 82, 77-89.
  •  
  • 9. Grifoll, M., Selifonov, S.A., and Chapman, P.J., 1994, Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274, Appl. Environ. Microbiol., 60, 2438-2449.
  •  
  • 10. Hattori, H., 1992, Influence of heavy metals on soil microbial activities, Soil Sci. Plant Nutr., 38, 93-100.
  •  
  • 11. Helbig, K., Grosse, C., and Nies, D.H., 2008, Cadmium toxicity in glutathione mutants of Escherichia coli, J. Bacteriol., 190, 5439-5454.
  •  
  • 12. Hong, H.B., Nam, I.H., Kim, Y.M., Chang, Y.S., and Schmidt, S., 2007, Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium, J. Hazard. Mater., 140, 145-148.
  •  
  • 13. Jung, M.C. and Jung, M.Y., 2006, Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. Korean Soc. Geosystem Eng., 43(5), 383-394.
  •  
  • 14. Kanaly, R.A. and Harayama, S., 2000, Biodegradation of highmolecular- weight polycyclic aromatic hydrocarbons by bacteria, J. Bacteriol., 182, 2059-2067.
  •  
  • 15. Keith, L.H. and Telliard, W.A., 1979, Priority pollutants. I. A perspective view, Environ. Sci. Technol., 13, 416-423.
  •  
  • 16. Kim, J., 2010, Heavy metal concentrations in soils and crops in the Poongwon mine area, J. Korean Geoenviron. Soc., 11, 5-11.
  •  
  • 17. Kolomytseva, M.P., Randazzo, D., Baskunov, B.P., Scozzafava, A., Briganti, F., and Golovleva, L.A., 2009, Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469, Bioresour. Technol., 100, 839-844.
  •  
  • 18. Lee, P.K., Jo, H.Y., and Youm, S.J., 2004, Geochemical approaches for investigation and assessment of heavy metal contamination in abandoned mine sites, Econ. Environ. Geol., 37, 35-48.
  •  
  • 19. Lin, C.W., Chen, S.Y., and Cheng, Y.W., 2006, Effect of metals on biodegradation kinetics for methyl tert-butyl ether, Biochem. Eng. J., 32, 25-32.
  •  
  • 20. Mitra, R.S. and Bernstein, I.A., 1978, Single-strand breakage in DNA of Escherichia coli exposed to $Cd^{2+}$, J. Bacteriol., 133, 75-80.
  •  
  • 21. Mittal, S.K. and Ratra, R.K., 2000, Toxic effect of metal ions on biochemical oxygen demand, Water Res., 34, 147-152.
  •  
  • 22. Monna, L., Omori, T., and Kodama, T., 1993, Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans Dbf63, Appl. Environ. Microbiol., 59, 285-289.
  •  
  • 23. Mostert, M.M., Ayoko, G.A., and Kokot, S., 2010, Application of chemometrics to analysis of soil pollutants, Trends in Anal. Chem., 29, 430-445.
  •  
  • 24. Nam, I.H., Chon, C.M., and Kim, J.G., 2011, Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil, J. Soil Groundwater Env., 16, 74-81.
  •  
  • 25. Nam, I.H., Hong, H.B., Kim, Y.M., Kim, B.H., Murugesan, K., and Chang, Y.S., 2005, Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1, Water Res., 39, 4651-4660.
  •  
  • 26. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., 2008, Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst, J. Hazard. Mater., 157, 114-121.
  •  
  • 27. Nam, I.H., Kim, Y.M., Schmidt, S., and Chang, Y.S., 2006, Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo- p-dioxin by Sphingomonas wittichii strain RW1, Appl. Environ. Microbiol., 72, 112-116.
  •  
  • 28. Nies, D.H., 1999, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51, 730-750.
  •  
  • 29. Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J.F., and Ferard, J.F., 2007, Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. Strain SNP11: expression in Mycobacterium smegmatis mc2 155, Res. Microbiol., 158, 175-186.
  •  
  • 30. Pepi, M., Volterrani, M., Renzi, M., Marvasi, M., Gasperini, S., Franchi, E., and Focardi, S.E., 2007, Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization, J. Appl. Microbiol., 103, 2299- 2308.
  •  
  • 31. Riis, V., Babel, W., and Pucci, O.H., 2002, Influence of heavy metals on the microbial degradation of diesel fuel, Chemosphere, 49, 559-568.
  •  
  • 32. Said, W.A. and Lewis, D.L., 1991, Quantitative assessment of the effects of metals on microbial degradation of organic chemicals, Appl. Environ. Microbiol., 57, 1498-1503.
  •  
  • 33. Schuler, L., Ni Chadhain, S.M., Jouanneau, Y., Meyer, C., Zylstra, G.L., Hols, P., and Agathos, S.N., 2008, Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126, Appl. Environ. Microbiol., 74, 1050- 1057.
  •  
  • 34. Sokhn, J., De Leij, F.A., Hart, T.D., and Lynch, J.M., 2001, Effect of copper on the degradation of phenanthrene by soil microorganisms, Lett. Appl. Microbiol., 33, 164-168.
  •  
  • 35. Thangaraj, K., Kapley, A., and Purohit, H.J., 2008, Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds, Bioresour. Technol., 99, 2488-2494.
  •  
  • 36. Tyler, G., 1974, Heavy metal pollution and soil enzymatic activity, Plant Soil, 41, 303-311.
  •  
  • 37. Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J.R., Renard, M.-E., Springael, D., and Cornelis, G.R., 2001, Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis, Res. Microbiol., 152, 861-872.
  •  
  • 38. Wilcke, W., 2007, Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil, Geoderma, 141, 157-166.
  •  

This Article

  • 2012; 17(6): 82-91

    Published on Dec 31, 2012

  • 10.7857/JSGE.2012.17.6.082
  • Received on Nov 19, 2012
  • Revised on Dec 6, 2012
  • Accepted on Dec 6, 2012