• Optimization of As Bioleaching by Herbaspirillum sp. GW103 Coupled with Coconut Oil Cake
  • Govarthanan, Muthusamy;Praburaman, Loganathan;Kim, Jin-Won;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Oh, Byung-Taek;
  • Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Mine Reclamation Corp.;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;
Abstract
The objective of this study was to optimize the experimental conditions for bioleaching of arsenic (As) using Herbaspirillum sp. GW103 and to understand the interaction between bacteria and As during bioleaching. Five variables, temperature, time, CaCO3, coconut oil cake, and shaking rate, were optimized using response surface methodology (RSM) based Box-Behnken design (BBD). Maximum (73.2%) bioleaching of As was observed at 30℃, 60 h incubation, 1.75% CaCO3, 3% coconut oil cake, and 140 rpm. Sequential extraction of bioleached soil revealed that the isolate Herbaspirillum sp. GW103 significantly reduced 28.6% of water soluble fraction and increased 38.8% of the carbonate fraction. The results of the study indicate that the diazotrophic bacteria Herbaspirillum sp. could be used for bioleaching As from mine soil.

Keywords: Arsenic;Bioleaching;Box-Behnken design;Herbaspirillum sp.;Heavy metals fraction;

References
  • 1. Achal, V., Pan, X., Fu, Q., and Zhang, D., 2012, Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli, J. Hazard. Mater., 201, 178-184.
  •  
  • 2. Arshadi, M. and Mousavi, S., 2014, Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization, Bioresour. Technol., 174, 233-242.
  •  
  • 3. Aung, K.M.M. and Ting, Y.-P., 2005, Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger, J. Biotechnol., 116(2), 159-170.
  •  
  • 4. Bajestani, M.I., Mousavi, S., and Shojaosadati, S., 2014, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization, Sep. Purif. Technol., 132, 309-316.
  •  
  • 5. Biswas, S., Chakraborty, S., Chaudhuri, M.G., Banerjee, P.C., Mukherjee, S., and Dey, R., 2014, Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids, J. Chem. Technol. Biotechnol., 89(10), 1491-1500.
  •  
  • 6. Bosecker, K., 2001, Microbial leaching in environmental clean-up programmes, Hydrometallurgy, 59(2), 245-248.
  •  
  • 7. Chen, S.-Y. and Lin, J.-G., 2001, Effect of substrate concentration on bioleaching of metal-contaminated sediment, J. Hazard. Mater., 82(1), 77-89.
  •  
  • 8. Chen, S.-Y. and Lin, P.-L., 2010, Optimization of operating parameters for the metal bioleaching process of contaminated soil, Sep. Purif. Technol., 71(2), 178-185.
  •  
  • 9. Chiang, Y.W., Santos, R.M., Monballiu, A., Ghyselbrecht, K., Martens, J.A., Mattos, M.L.T., Van Gerven, T., and Meesschaert, B., 2013, Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and wastederived alkaline materials, Miner. Eng., 48, 116-125.
  •  
  • 10. Deng, X., Chai, L., Yang, Z., Tang, C., Tong, H., and Yuan, P., 2012, Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater., 233, 25-32.
  •  
  • 11. Govarthanan, M., Lee, G.-W., Park, J.-H., Kim, J.S., Lim, S.-S., Seo, S.-K., Cho, M., Myung, H., Kamala-Kannan, S., and Oh, B.-T., 2014a, Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil, Chemosphere, 109, 42-48.
  •  
  • 12. Govarthanan, M., Lee, K.-J., Cho, M., Kim, J.S., Kamala-Kannan, S., and Oh, B.-T., 2013, Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings, Chemosphere, 90(8), 2267-2272.
  •  
  • 13. Govarthanan, M., Lee, S.-M., Kamala-Kannan, S., and Oh, B.-T., 2015, Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103, Res. Microbiol., DOI: http://dx.doi.org/10.1016/j.resmic. 2015.02.007.
  •  
  • 14. Govarthanan, M., Park, S.-H., Kim, J.-W., Lee, K.-J., Cho, M., Kamala-Kannan, S., and Oh, B.-T., 2014b, Statistical optimization of alkaline protease production from brackish environment Bacillus sp. SKK11 by SSF using horse gram husk, Prep. Biochem. Biotechnol., 44(2), 119-131.
  •  
  • 15. Govarthanan, M., Selvankumar, T., Selvam, K., Sudhakar, C., and Kamala-Kannan, S., 2014c, Response surface methodology optimization of keratinase production from alkali-treated feather waste and horn meal using Bacillus sp. MG-MASC-BT, J. Ind. Eng. Chem., DOI: http://dx.doi.org/10.1016/j.jiec.2014.12.022.
  •  
  • 16. Lee, E., Han, Y., Park, J., Hong, J., Silva, R.A., Kim, S., and Kim, H., 2015, Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans, J. Environ. Manage., 147, 124-131.
  •  
  • 17. Lee, G.W., Lee, K.-J., and Chae, J.-C., 2012, Genome sequence of Herbaspirillum sp. strain GW103, a plant growth-promoting bacterium, J. Bacteriol., 194(15), 4150-4150.
  •  
  • 18. Liu, H.-L., Lan, Y.-W., and Cheng, Y.-C., 2004, Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology, Proc. Biochem., 39(12), 1953-1961.
  •  
  • 19. Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., and Rhee, Y.H., 2008, Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect, J. Hazard. Mater., 152(3), 1082-1091.
  •  
  • 20. Mulligan, C.N. and Galvez-Cloutier, R., 2003, Bioremediation of metal contamination, Environ. Monit. Assess., 84(1-2), 45-60.
  •  
  • 21. Prakash, O., Talat, M., Hasan, S., and Pandey, R.K., 2008, Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste, Bioresour. Technol., 99(16), 7565-7572.
  •  
  • 22. Rulkens, W.H., Grotenhuis, J.T.C., and Tichý, R., 1995, Methods for cleaning contaminated soils and sediments, Heavy metals. in: W. Salomons, U. FD orstner, P. Mader (Eds.), Heavy Metals, Springer-Verlag, Berlin, 1995, pp. 151-191.
  •  
  • 23. Selvam, K., Govarthanan, M., Kamala-Kannan, S., Govindharaju, M., Senthilkumar, B., Selvankumar, T., and Sengottaiyan, A., 2014, Process optimization of cellulase production from alkalitreated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC, Roy. Soc. Chem. Adv., 4(25), 13045-13051.
  •  
  • 24. Xu, T.-J. and Ting, Y.-P., 2004, Optimisation on bioleaching of incinerator fly ash by Aspergillus niger-use of central composite design, Enzyme Microb. Technol., 35(5), 444-454.
  •  
  • 25. Yang, J.E., Ok, Y.S., Kim, W.I., and Lee, J.S., 2008, Heavy metal pollution, risk assessment and remediation in paddy soil environment: research and experiences in Korea. In: Sanchez, M.L. (Ed.), Cause and Effects of Heavy Metal Pollution, Nova Science Publishers, New York.
  •  

This Article

  • 2015; 20(2): 47-54

    Published on Apr 30, 2015

  • 10.7857/JSGE.2015.20.2.047
  • Received on Apr 10, 2015
  • Revised on Apr 24, 2015
  • Accepted on Apr 27, 2015