• Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan
  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu;
  • Department of Life Sciences, National Central University;Department of Life Sciences, National Central University;Department of Life Sciences, National Central University;
Abstract
A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.

Keywords: Pseudomonas sp.;Transcriptome;Mercury;RNA-seq;

References
  • 1. Cassier-Chauvat, C. and Chauvat, F., 2015, Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances, Int. J. Mol. Sci., 16, 871-886.
  •  
  • 2. Chien, C.C., Kao, C.M., Chen, D.Y., Chen, S.C., and Chen, C.C., 2014, Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment, Environ. Toxicol. Chem., 33, 1059-1063.
  •  
  • 3. Cursino, L., Mattos, S. V. M., Azevedo, V., Galarza, F., Bucker, D. H., Chartone-Souza, E., and Nascimento, A. M. A., 2000, Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli, Sci. Total Environ., 261, 109-113.
  •  
  • 4. Dash, H.R. and Das, S., 2012, Bioremediation of mercury and the importance of bacterial mer genes, Int. Biodeterior. Biodegrad., 75, 207-213.
  •  
  • 5. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, B.U., Sahu, A., Shukla, R., Singh, P.B., Rai, P.J., Sharma, K.P., Lade, H., and Paul, D., 2015, Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes, Sustainability, 7.
  •  
  • 6. Hobman, J.L. and Crossman, L.C., 2015, Bacterial antimicrobial metal ion resistance, J. Med. Microbiol., 64, 471-497.
  •  
  • 7. Hsu, L.S., Chiou, B.H., Hsu, T.W., Wang, C.C., and Chen, S.C., 2016, The regulation of transcriptome responses in zebrafish embryo exposure to triadimefon, Environ. Toxicol.
  •  
  • 8. Jozefczak, M., Remans, T., Vangronsveld, J., and Cuypers, A., 2012, Glutathione is a key player in metal-induced oxidative stress defenses, Int. J. Mol. Sci., 13, 3145-3175.
  •  
  • 9. Kisand, V. and Lettieri, T., 2013, Genome sequencing of bacteria: sequencing, de novoassembly and rapid analysis using open source tools, BMC Genomics, 14, 1-11.
  •  
  • 10. Mathema, V.B., Thakuri, B.C., and Sillanpaa, M., 2011, Bacterial mer operon-mediated detoxification of mercurial compounds: a short review, Arch. Microbiol., 193, 837-844.
  •  
  • 11. Munson, G.P., Lam, D.L., Outten, F.W., and O'Halloran, T.V., 2000, Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12, J Bacteriol, 182, 5864-5871.
  •  
  • 12. Ndu, U., Barkay, T., Schartup, A.T., Mason, R.P., and Reinfelder, J.R., 2016, The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria, Biodegradation, 27, 29-36.
  •  
  • 13. Pradhan, S., Bandhiwal, N., Shah, N., Kant, C., Gaur, R., and Bhatia, S., 2014, Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds, Front. Plant. Sci., 5, 698.
  •  
  • 14. Qin, Y.F., Fang, H.M., Tian, Q.N., Bao, Z.X., Lu, P., Zhao, J.M., Mai, J., Zhu, Z.Y., Shu, L.L., Zhao, L., Chen, S.J., Liang, F., Zhang, Y.Z., and Zhang, S.T., 2011, Transcriptome profiling and digital gene expression by deep-sequencing in normal/regenerative tissues of planarian Dugesia japonica, Genomics, 97, 364-371.
  •  
  • 15. Regier, N., Baerlocher, L., Munsterkotter, M., Farinelli, L., and Cosio, C., 2013, Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing, Environ. Sci. Technol., 47, 8825-8834.
  •  
  • 16. Robinson, J.B. and Tuovinen, O.H., 1984, Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses, Microbiol. Rev., 48, 95-124.
  •  
  • 17. Singh, R., Gautam, N., Mishra, A., and Gupta, R., 2011, Heavy metals and living systems: An overview, Indian J. Pharmacol., 43, 246-253.
  •  
  • 18. Singh, S., Parihar, P., Singh, R., Singh, V.P., and Prasad, S.M., 2015, Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics, Front. Plant. Sci., 6, 1143.
  •  
  • 19. Sun, G., Yang, Y., Xie, F., Wen, J.-F., Wu, J., Wilson, I.W., Tang, Q., Liu, H., and Qiu, D., 2013, Deep Sequencing Reveals Transcriptome Re-Programming of Taxus × media Cells to the Elicitation with Methyl Jasmonate, PLoS ONE, 8, e62865.
  •  
  • 20. Tao, X., Jiang, M., Zhang, F., Xu, F., and Wei, H., 2015, Draft Genome Sequence of Lactobacillus plantarum WLPL04, Isolated from Human Breast Milk, Genome Announc., 3.
  •  
  • 21. Vining, K.J., Romanel, E., Jones, R.C., Klocko, A., Alves-Ferreira, M., Hefer, C.A., Amarasinghe, V., Dharmawardhana, P., Naithani, S., Ranik, M., Wesley-Smith, J., Solomon, L., Jaiswal, P., Myburg, A.A., and Strauss, S.H., 2015, The floral transcriptome of Eucalyptus grandis, New Phytol., 206, 1406-1422.
  •  
  • 22. Wang, Z., Gerstein, M., and Snyder, M., 2009, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genet., 10, 57-63.
  •  
  • 23. Xie, F., Burklew, C.E., Yang, Y., Liu, M., Xiao, P., Zhang, B., and Qiu, D., 2012, De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome, Planta, 236, 101-113.
  •  
  • 24. Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., Tang, M., Fu, R., Li, J., and Huang, Q., 2013, Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification, GigaScience, 2, 4.
  •  

This Article

  • 2016; 21(5): 16-24

    Published on Oct 31, 2016

  • 10.7857/JSGE.2016.21.5.016
  • Received on Oct 4, 2016
  • Revised on Oct 15, 2016
  • Accepted on Oct 28, 2016