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ABSTRACT

Community drinking water (CDW), mostly naturally flowing groundwater, plays important roles in supplying drinking

water for urban and rural residents in Korea. Over 1,600 CDW facilities are distributed throughout the country, many of

them situated in the outskirts of metropolitan cities. A large proportion of Korean people have become dependent on

CDW for drinking due to a distrust of piped water’s quality and a strong belief in the special medicinal effects of some

CDWs. However, administrative and official management and the control of CDW facilities have been inadequate when

compared with the strict examination and control of commercial bottled water, which is physically treated groundwater

from deep bedrock aquifers. In this study, even though signs of anthropogenic contamination were not generally found, the

tested chemical compositions of selected CDWs featured high enrichment of some constituents including Ca, Mg, Na, and

HCO3 with natural origins such as water-rock interactions. Careless consumption of particular CDWs, which has no

scientific basis, will not guarantee health improvement. Consequently, more intensive management of CDW facilities and

a long-term interdisciplinary examination of the health effects of CDWs are needed to effectively protect people’s health.
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1. Introduction

The Republic of Korea (hereafter Korea) is one of the

most rapidly developing countries. With this economic

development, the needs and interests of the people with

respect to healthful foods and a clean environment, includ-

ing clean water and air, have increased dramatically. Con-

sumers readily pay higher costs for environment-friendly

agricultural products (no pesticides or artificial fertilizers

applied) and for commercial bottled water (domestic or

imported) instead of tap water from urban/municipal water

works. Frequent river water contamination accidents due to

wastewater effluents (Ko et al., 2007; Sim et al., 2010) have

aggravated public skepticism about the quality of tap water

sourced from rivers. Most Koreans buy bottled water for

drinking; only poor people drink tap water, and then only

after boiling. After the commercial sales of bottled water or

mineral water (only permitted if it is pumped groundwater)

was officially permitted in 1995, its domestic sales rose sig-

nificantly from $264 million in 2005 to $661 million in

2012, reflecting an annual growth rate of over 10%.

In addition to bottled water, community drinking water

(CDW) facilities, defined as naturally flowing water,

springs, or developed wells for supplying drinking water to

the public, called “Yaksu” in Korean (Lee, 2013), have been

gaining popularity over the years. Many Koreans believe

that Yaksu has medical value or mysterious effectiveness for

healing certain diseases. These CDW facilities (over 1,600

facilities throughout the country; Fig. 1) have been man-

aged according to the Management of Drinking Water Act

(No. 11663) enacted in 1995 (Lee, 2013). However, although

commercially sold bottled water has been strictly regulated

by a relevant governmental authority (Ministry of Environ-

ment) under the same law, through a tough environmental

impact assessment during the development permit stage,

very frequent water quality tests (Table 1) during the pro-
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duction stage, and taxation on its dissemination, the control

of CDW has been somewhat loose and arbitrary.

Local governments (county level) have been conducting

water quality testing for each CDW facility (Table 2). The

parameters for the quarterly (1st, 3rd, and 4th) tests include

total colony counts, total coliforms, Escherichla coli, NH3-N,

NO3-N, KMnO4 consumption, and total solids (generally

excluded in the test). In the second quarterly test, the num-

ber of the examining parameters increases to 48, including

the above parameters. If the water quality of the CDW facil-

ity exceeds the standards, the local government issues a

notice (a warning poster) to persuade people to stop using

the water (facility) for drinking purposes (see Fig. 1(d)).

However, this passive measure cannot deter local people

from seeking and consuming the water (Lee, 2013). Further-

more, because many CDW (Yaksu) facilities are located in

somewhat remote areas (mostly in the mountains) far from

main residential areas, administrative measures, including

water quality testing and bans on its use, are not effective. 

The most popular Yaksu (CDW) in the country has abnor-

Table 1. Summary of water quality tests for commercial bottled water, enforced by a relevant Korean law 

No. of parameters Test parameters Frequency

5 Odor, taste, color, turbidity, pH Every day

4
Total colony counts (psychrophilic and mesophilic bacteria), Total coliforms, 

Pseudomonas aerugino
Two times per week

4 Fecal streptococci, Sulfate reducing spore forming anaerobe, Salmonella spp., Shigella spp. Every month

57
Totally 57 parameters including microbes, inorganic substances, organic compounds, 

disinfectants and above parameters
Every six month

Table 2. Summary of water quality tests for community drinking water facility

No. of

parameters
Test parameters Quarter

7 Total colony counts, Total coliforms, Escherichla coli, NH3-N, NO3-N, KMnO4 consumption, total solids 1/4, 3/4, 4/4 

48
Totally 48 parameters including microbes, inorganic substances, organic compounds, disinfectants and above 

parameters
2/4

Fig. 1. Scenes of community drinking water facilities and some of them have been suffered from contamination.
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mally high levels of constituents such as metals (Fe and Mn)

and (bi)carbonate (HCO3) (Koh et al., 2000). This quality

(sometimes accompanied by an unpleasant smell and taste)

attracts people who believe that this water has a special

medical effectiveness for some diseases. However, verifica-

tion of this medical effectiveness has been rare (Lee, 2013),

and this water source has often suffered from natural and

anthropogenic contamination due to the absence of appropri-

ate maintenance. The most frequent problematic parameters

among CDW include microbes (total colony counts, total

coliforms, and fecal coliforms), nitrate, and iron. Although

some cations (Ca, Mg, Na, K) and anions (HCO3
−, CO3

2-)

may be greatly enriched in some of these sources, they are

not generally controlled because they are not listed in

Korean drinking water standards.

The objective of this study was to examine the chemical

characteristics of CDW facilities throughout Korea with the

aim of arriving at some implications and recommendations

for proper management. For this purpose, we collected basic

information (location and distribution) of the CDW facili-

ties from the Ministry of Environment and chemistry data

from the Korean scientific literature.

 

2. Methods and Materials

2.1. Study Area

Korea is located in southern part of the Korean peninsula

and has an area of 99,601 km2; it is surrounded by water on

three sides (Fig. 2(a)). The population of the country was

approximately 50 million in 2012, reflecting a population

density of 502 people/km2. However, the population density

is much greater in the metropolitan cities (grey colored areas

in Fig. 2(b)), ranging from 12,000 (Ulsan) to 18,000 people/

km2 (Seoul). Approximately 75% of the country is moun-

tainous, and topographic elevations are high in the east (500-

1,000 m) and low in the west (< 100 m) (Lee et al., 2007).

Thus, paddy and vegetable fields are mostly distributed in

the west, with forests in the east.

The climate of Korea is characterized by the East Asian

monsoon and has four distinct seasons (Lee and Lee, 2000;

Seo and Ok, 2013). The annual mean air temperature from

1981-2010 was 10-15oC, with the highest temperatures

occurring in August (23-26oC), and the lowest in January

(-6-3oC) (KMA, 2013). The annual precipitation ranges

from 1,000 to 1,900 mm, with an increasing trend due to cli-

mate change, and over 60% of the total precipitation occurs

Fig. 2. Location of the study area (Korea) showing the number of community drinking water (CDW) facilities as of 2009.
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in the summer (June-August) (Lee et al., 2012). Recently,

increases in annual precipitation have been concentrated in

the wet season, and heavy rainstorms are therefore more fre-

quent in this season (Jung et al., 2013).

The geology of Korea comprises mainly Precambrian

gneiss and Jurassic granite in the middle part, and Cretaceous

sedimentary rocks in the southern part. Quaternary volcanic

rocks are only found at Jeju Island and Ulleung-do (Lee et al.,

2007). In the central part, a zone of highly metamorphosed

rocks, governed by thrusts and folds and with a band width of

70 km, is distributed from southwest to northeast, extending

400 km (Choi et al., 2012; Moon et al., 2013). Carbonate

rocks are mainly distributed in this zone, especially in Gang-

won Province (GW area in Fig. 2; Park et al., 2011a).

Annual water use in Korea is 33.3 billion m3, of which

32.4, 56.4, and 11.2% are obtained from rivers, dams, and

groundwater, respectively (GIMS, 2013). Among the total

annual groundwater use (3.7 billion m3), agricultural and

domestic use account for 48.9 and 46%, respectively, while

other uses such as hot springs and bottled water represent

only 5.1% (GIMS, 2013). There are approximately 1.44 mil-

lion groundwater wells in Korea, resulting in well density of

14.5 wells/km2. Although most urban areas are serviced by

waterworks (97.6-99.1%), urban residents generally depend

on bottled water or CDW (Yaksu) as a drinking water source

because they doubt the quality of piped municipal water

(chemically treated river water).

2.2. Data Collection

The location data (coordinates) of officially reported

CDW facilities were obtained from an open access site

(Institute of Health and Environment of Gyeonggi Province;

http://gihe.gg.go.kr). Additionally, water quality data for

these facilities (n = 236, mainly chemical compositions)

were collected from various sources in the published litera-

ture, including Kim et al. (1998) (number of data set, n = 47),

Moon and Park (1998) (n = 47), Jeong and Jeong (1999)

(n = 7), Koh et al. (2000) (n = 19), Kim et al. (2001)

(n = 14), Jeong et al. (2002) (n = 31), Kim et al. (2002)

(n = 51), Jeong et al. (2011) (n = 11), and Jeong et al. (2012)

(n = 9). Concentration units were adjusted to mg/L for fur-

ther analysis, but the charge balance was not checked due to

some missing data in each data set (parameters not ana-

lyzed). The geology around CDW facilities included in this

study was mostly biotite granite or gneiss and partly sedi-

mentary rocks.

3. Results and Discussion

3.1. Distribution of CDW (Yaksu) Facilities

Fig. 2(b) shows the distribution of CDW facilities

throughout the country. With respect to the administrative

province, the number of CDW facilities is greater in the

order Gyeonggi (GG) Province > Seoul (SL) > Busan (BS) >

Gangwon Province (GW). However, the number per unit

area is Seoul (SL) > Busan (BS) > Daejeon (DJ) > Incheon

(IC). These statistics indicate that the CDW facilities are

mostly placed in urban areas with high populations. This is

somewhat ironic because metropolitan areas are the best ser-

viced by waterworks. However, as noted above, citizens do

not trust urban water quality and instead are willing to pay

for expensive bottled water and/or take a tiresome walk to a

CDW facility (Kim et al., 2011).

Fig. 3 shows the detailed distribution of CDW facilities in

GG Province (27 cities and four counties). Most of the total

431 CDW facilities are distributed in a circular pattern

around Seoul, and they are mostly located within a 1-h drive

from Seoul (Fig. 3(a)). However, it is important to note that

many CDW facilities are not reported to the administrative

authorities and are therefore not identified in the official

data. Fig. 3(b) shows CDW facilities with their topographic

elevations. Most of them (> 90%) are situated at elevations

of 50-300 m, such as at the entrance to small mountains/hills

or to mountain trails (Lee, 2013). Additionally, CDW facil-

ities are generally located near local small rivers and streams

(Fig. 3(c)). Considering that the amount of water flowing

from CDW facilities increases in the wet season, and the

electrical conductivity of CDW decreases at the same time,

we infer that the water supply is largely dependent on rain-

fall as interflow rather than water table percolation (Arno et

al., 1998; Jeelani et al., 2010; Goncalves et al., 2013). Fig.

3(d) shows the distribution of CDW facilities according to

land use, indicating that many are situated in mountain for-

ests. Therefore, Koreans expect that these sources are very

clean and free from anthropogenic contamination. However,

CDW sources do suffer from natural contamination related
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to indigenous geology and from also anthropogenic contam-

ination due mainly to the absence of maintenance (Kim et

al., 1977; Yun and Jeong, 1983; Jeong et al., 2002; Kim et

al., 2008).

 

3.2. Physical and Chemical Parameters of CDW

Fig. 4 shows field measured parameters including water

temperature (T), pH, Eh, dissolved oxygen (DO), total dis-

solved solids (TDS), and electrical conductivity (EC). Water

temperature ranged from 1.0 to 22.5oC, with a mean of

14.6oC (Fig. 4(a)). Much lower (< 10oC) and higher (> 18oC)

water temperatures were attributed to the effects of outdoor

air temperature because the naturally flowing water is

directly exposed to the atmosphere. The mean water temper-

ature was within the range of shallow groundwater temper-

atures (Park et al., 2011b). The pH showed a very wide

range between 2.4 and 8.3, but its mean was slightly acidic

(pH 6.1) (Fig. 4(b)). The Korean drinking water pH stan-

dard is 5.8-8.5, and 18.5% of CDWs were outside this

range. However, this water has been popularly used without

any control by Korean people (Kim et al., 2001). Very acidic

water sources are generally attributed to enriched CO2 orig-

inating from the deep subsurface (igneous host rocks) and/or

the dissolution of carbonate minerals in shallow surround-

ing sedimentary rocks (Kim et al., 2002; Jeong et al., 2011).

This carbonic acidic water (high PCO2) is a favorite CDW

in Korea because it is believed to aid in food digestion and

to cure gastritis (Jeong et al., 2011). However, the excess

and long-term consumption of highly acidic water is not

thought to be good for people’s health, much like very low

pH soda water (Tahmassebi et al., 2004; Warren et al., 2009).

Figs. 4(c) and 4(d) show the Eh and DO of CDW. Values

Fig. 3. Distribution of CDW facility with (a) administrative boundary, (b) topographic elevation, (c) river/stream and (d) land use.
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of Eh range from −8.1 to 641 mV with a mean of 156 mV,

and those of DO range between 0.4 and 9.9 mg/L with a

mean of 3.4 mg/L. Negative or low Eh with a depressed DO

indicate that CDW originate from deep groundwaters,

whereas very high positive Eh values with high DO values

(> 1 mg/L) indicate mixing with shallow groundwaters and/

or the continuous exposure of CDWs to outside air. Both

TDS and EC showed similar distributions (Figs. 4(e) and

4(f)) because they are inherently and closely correlated

(Walton, 1989). More specifically, TDS showed a range

between 57 and 5,684 mg/L with a mean of 931 mg/L, and

EC had a range between 53 and 5,520 µS/cm with a mean of

1,056 µS/cm. Very high TDS and EC values indicate that

most CDWs are highly enriched with various dissolved con-

stituents including Ca, Ng, Na, Si, and HCO3. According to

WHO guideline (1,000 mg/L) for TDS (WHO, 2003), about

42% of CDWs exceeded this standard, although Korea has

no guideline for TDS.

Fig. 5 shows cumulative probability distributions of some

major cations including calcium (Ca), magnesium (Mg),

hardness, sodium (Na), potassium (K), and silicon (Si). Con-

centrations of Ca ranged from 0.6 to 673.5 mg/L with a

mean of 87.73 mg/L, and it was the most dominant cation.

Considering that the surrounding geology of CDW facilities

was found to be mostly granite and granitic gneiss, the Ca

likely originated from weathering of silicate minerals (Hem,

1985; Lakshmanan et al., 2003). Very high Ca levels can

cause concretions in the kidneys or irritation of the urinary

tract (Magesh and Chandrasekar, 2013). Mg was also

present in CDW at substantial concentrations between 0.32

Fig. 4. Cumulative probability plot of field measured parameters (water temperature, pH, Eh, EC, TDS and DO).
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and 136 mg/L (mean = 17.65 mg/L) and was the fourth most

abundant cation. Although there are no drinking water regu-

lations for either Ca or Mg ion in Korea, hardness (perma-

nent), represented by Ca and Mg, has a guideline of 1,000

mg/L (as CaCO3) for CDW, and about 10% of CDW

exceeded this guideline. However, water hardness is not

generally considered a parameter related to severe health

problems (WHO, 2011) even though high Mg levels may

cause a laxative effect (Magesh and Chandrasekar, 2013). 

Sodium was the second most abundant cation after cal-

cium, with a range between 1.1 and 544 mg/L (mean = 53.04

mg/L). Very high enrichment of Na compared with Cl

(mostly below the 1 : 1 equiline in a Na vs. Cl scatter plot;

not shown) indicated that Na is released mainly from the sil-

icate weathering process, not from halite dissolution (Laksh-

manan et al., 2003; Kumar et al., 2006; Srinivasamoorthy et

al., 2008). There is no standard for Na concentrations in

Korea. Potassium was the least abundant among the major

cations, and its concentrations ranged from 0.1 and 78 mg/L

with a mean of 3.69 mg/L (Fig. 5(e)), and silicon was found

in largely elevated concentrations between 3 and 154.2 mg/L

(mean = 35.39 mg/L). However, as with Na, there are no

standards for drinking water levels of K or Si in groundwa-

ter because they are not expected to raise particular health

issues.

Fig. 6 shows cumulative distribution plots for the major

anions of CDW. The abundance of anions was in the order

bicarbonate (HCO3) > sulfate (SO4) > chloride (Cl) > nitrate

(NO3) > fluoride (F). F is the least abundant anion (0.05-39

mg/L); however, approximately 11% of CDWs exceeded the

Korean standard (2 mg/L). Frequent ingestion of groundwa-

ter containing high concentration of fluoride can cause fluo-

Fig. 5. Cumulative probability plot of some major cations (Ca, Mg, hardness, Na, K and Si).
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rosis. The main source of fluoride is likely weathering of

granite or granitic gneiss containing fluoride minerals (Singh

et al., 2011; Avtar et al., 2013). Chloride was slightly

enriched, ranging between 1.2 and 100.2 mg/L (mean = 11.4

mg/L); however, the tested CDWs did not exceed the

Korean chloride standard (250 mg/L). Chloride is an indica-

tor of anthropogenic pollution, and therefore, these rela-

tively low levels of chloride indicate that CDW is generally

not affected by residential waste and sewage or industrial

wastewater because many CDW facilities are located at a

distance from main residential communities.

Levels of nitrate ranged from 0.00 to 65.10 mg/L with a

mean of 4.17 mg/L. Considering the Korean drinking water

standard of 44.3 mg/L for NO3 (10 mg/L as NO3-N) and the

average high levels (>>44.3 mg/L) of nitrate in the agricul-

tural and residential areas of Korea (Choi et al., 2007;

Kaown et al., 2009), the levels in CDWs were generally low,

and only 2.7% exceeded the standard. Similar to chloride,

these low levels of nitrate also indicate little anthropogenic

contamination from sources such as fertilizers, manures, and

wastewater (Williams et al., 1998; WHO, 2011). The sulfate

concentrations were high (0.2-3,680 mg/L) and the second

most abundant measured constituent (mean = 39.22 mg/L).

However, because the drinking water standard for sulfate is

very high (250 mg/L), only 2.1% of CDW samples exceeded

the Korean standard. Even though sulfate is not likely to

cause severe health risks, very high drinking water sulfate

concentrations (327.5-3,680 mg/L), associated with oxida-

tion of sulfide minerals (Kim et al., 2002), may produce gas-

trointestinal effects (WHO, 2011).

Fig. 6. Cumulative probability plot of some major anions (F, Cl, NO3, SO4, HCO3).
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Bicarbonate showed the most striking levels at 17 to 2,685

mg/L (mean = 572.65 mg/L). Most Koreans like to drink

carbonated water (water containing high CO2) because they

believe that the carbonated water helps to digest foods

(Jeong et al., 2012). Korea has no limit on carbonate in

CDW (500 mg/L in India); however, the excessive consump-

tion of water with very high bicarbonate levels in the ser-

vice of better health has no solid scientific basis (Lee, 2013).

High bicarbonate water occurs mostly in granitic areas and

thus would originate from silicate mineral alteration, not

from dissolution of carbonate minerals (Chae et al., 2006).

3.3. Correlations between Parameters 

Table 3 shows the Pearson correlation coefficients between

the physical and chemical parameters of CDW. Water tem-

perature and pH did not show any substantial correlation

with any parameter. However, Eh showed a significant and

negative correlation with Ca, Mg, and HCO3 (r = −0.77 to

0.65). Considering that there were very high positive corre-

lations among the latter three parameters (Ca and Mg:

r = 0.82, Ca and HCO3: r = 0.86, Mg and HCO3: r = 0.88),

this indicates that the three parameters behave similarly and

that they were derived from the same origin or mechanism,

such as silicate mineral alteration in the deep subsurface. As

generally expected, EC showed moderate to high positive

correlations with most of parameters including Ca (r = 0.81),

Mg (r = 0.90), Na (r = 0.61), K (r = 0.53), Si (r = 0.54), Cl

(r = 0.51), and HCO3 (r = 0.95). Na showed significant pos-

itive correlations with Si (r = 0.63), F (r = 0.76), and HCO3

(r = 0.59). These results again indicate that fluoride (similar

to HCO3) may be derived from weathering of fluorine-bear-

ing silicate minerals (Subba Rao and Devadas, 2003).

3.4. Status and Water Quality Index

Fig. 7 shows some selected diagrams revealing the water

status and origin of CDW. The first is a plot of pH versus Eh

(Fig. 7(a)) with CDWs plotted in regions B and C, indicat-

ing that these waters are under transitional to slightly

reduced environmental exposure, with little direct and con-

tinuous contact with outdoor air, meaning they are mostly

from shallow or deep groundwaters (Bass Becking et al.,

1960). Chemical compositions are illustrated in Fig. 7(b).

Most CDWs (80.8%) were Ca-HCO3 type, and a few

(17.7%) were Na-HCO3 type. The Ca-HCO3 type is a typi-

cal characteristic of shallow groundwaters; however, the

number of water sources plotted in the transitional zone

between Ca-HCO3 and Na-HCO3 indicates that these waters

are largely experiencing silicate alteration (weathering) in

the deep subsurface (Toran and Saunders, 1999; Rajmohan

and Elango, 2004; Jalali, 2007). The Gibbs diagram gives

information on the predominance of water-rock interactions

(weathering), evaporation, or precipitation in water chemis-

Table 3. Correlation between physicochemical parameters of community drinking water (n = 74). Correlation in the lower triangle;

probability uncorrelated in the upper triangle. High correlation values (> 0.5) are in bold 

T pH Eh EC DO Ca Mg Na K Si F Cl NO3 SO4 HCO3

T - -0.444 -0.001 -0.003 -0.034 -0.000 -0.000 -0.464 -0.174 -0.530 -0.175 0.837 -0.941 0.006 0.000

pH -0.09 - -0.194 -0.118 -0.004 -0.132 -0.204 -0.401 -0.609 -0.567 -0.489 0.985 -0.881 0.244 0.166

Eh -0.37 -0.15 - -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.002 -0.006 0.008 -0.868 0.225 0.000

EC -0.20 -0.10 -0.26 - -0.003 -0.000 -0.000 -0.000 -0.000 -0.000 -0.043 0.000 -0.490 0.018 0.000

DO -0.25 -0.32 -0.46 -0.34 - -0.001 -0.006 -0.076 -0.398 -0.349 -0.278 0.346 -0.650 0.035 0.000

Ca -0.46 -0.18 -0.70 -0.81 -0.37 - -0.000 -0.031 -0.001 -0.000 -0.746 0.003 -0.859 0.017 0.000

Mg -0.48 -0.15 -0.65 -0.90 -0.32 -0.82 - -0.007 -0.000 -0.005 -0.465 0.000 -0.527 0.057 0.000

Na -0.09 -0.09 -0.47 -0.61 -0.21 -0.25 -0.31 - -0.000 -0.000 -0.000 0.030 -0.886 0.270 0.000

K -0.16 -0.06 -0.41 -0.53 -0.10 -0.37 -0.45 -0.51 - -0.001 -0.024 0.021 -0.641 0.538 0.000

Si -0.07 -0.07 -0.34 -0.54 -0.11 -0.44 -0.32 -0.63 -0.37 - -0.000 0.106 -0.443 0.821 0.000

F -0.16 -0.08 -0.31 -0.24 -0.13 -0.04 -0.09 -0.76 -0.26 -0.58 - 0.957 -0.445 0.651 0.031

Cl -0.02 -0.00 -0.30 -0.51 -0.11 -0.34 -0.52 -0.25 -0.27 -0.19 -0.01 - -0.380 0.197 0.000

NO3 -0.01 -0.02 -0.02 -0.08 -0.05 -0.02 -0.07 -0.02 -0.05 -0.09 -0.09 0.10 - 0.995 0.854

SO4 -0.31 -0.14 -0.14 -0.27 -0.24 -0.28 -0.22 -0.13 -0.07 -0.03 -0.05 0.15 -0.00 - 0.434

HCO3 -0.46 -0.16 -0.77 -0.95 -0.43 -0.86 -0.88 -0.59 -0.57 -0.56 -0.25 0.42 -0.02 0.09- -
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try (Kumar et al., 2009), and Fig. 7(c) shows that the inter-

action between surrounding rock and groundwater is the

dominant factor in these waters. Furthermore, a plot of

HCO3 + SO4 versus Ca + Mg (Fig. 7(d)) further demonstrates

that silicate weathering prevails over carbonate weathering. 

Fig. 8 shows a classification of CDWs with respect to

water taste and health effects using chemical composition

based on O and K indices by Hashimoto et al. (1987). The O

and K indices were expressed as O index = [Ca + K + SiO2] /

[Mg + SO4] and K index = Ca-0.87Na. Waters with an O

index over 2.0 and K index over 5.2 represent tasty and

healthful water, respectively (Hashimoto et al., 1987).

According to these indices, 48% of CDWs were classified as

both tasty and healthful water, whereas 42% were neither

tasty nor healthful. Although these indices are empirical and

somewhat subjective, it may be inferred that a considerable

proportion of CDWs in this study are inappropriate to drink

with respect to either taste or health concerns.

4. Conclusions and Implications

Here, we examined characteristics (location, field mea-

Fig. 7. Redox condition and chemical composition of community drinking waters in Korea (n = 236).

Fig. 8. Classification of carbonic community drinking water

(n = 182) using O and K indices.
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sured parameters, and chemical composition) of some pop-

ular CDWs in Korea. Most Koreans believe that these

waters are beneficial to their health, mainly due to the pre-

sumed pharmacological action of certain constituents that

are present in abnormally high concentrations. Especially,

high iron (not included in this study) and (bi)carbonate

waters have attracted many Korean people. This great

dependency on CDWs is largely derived from a distrust of

the quality of tap water and surface water. However, the

maintenance and control of CDW facilities have been inad-

equate compared with those of commercial bottled waters.

When the CDWs exceed the Korean standards, the relevant

environmental authorities post a warning message but gen-

erally fail to ban the use of contaminated waters by commu-

nity people. Therefore, the designation of a private,

unofficial (honorary) manager for the proper management of

CDWs and the enactment of an effective ban on their use

during times of contamination are required. Furthermore, as

described above, we do not know whether particular CDWs

are medically effective, and thus we need a long-term mul-

tidisciplinary research on the actual health effects of CDW

consumption.
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